Please use this identifier to cite or link to this item:
Title: Unique water H-bonding types on metal surfaces: from the bonding nature to cooperativity rules
Authors: Li, Jibiao
Sun, Chang Qing
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2021
Source: Li, J. & Sun, C. Q. (2021). Unique water H-bonding types on metal surfaces: from the bonding nature to cooperativity rules. Materials Today Advances, 12, 100172-.
Journal: Materials Today Advances 
Abstract: Understanding the nature of H-bonding interactions is essential to modern sciences, such as biology, chemistry, and physics. Using density functional theory calculations, herein, we have identified two unique H-bonding types existing in a single sheet of a mixed water–hydroxyl phase on close-packed metal surfaces, in sharp contrast to conventional H-bonds in liquid water and water ices. Interestingly, the shallow H-bonds show reduced electrostatic and Pauli repulsion interactions, with an electrostatic polar character resulted from complete σ resonances, whereas the deep H-bonds exhibit enhanced electrostatic and Pauli repulsion interactions, with an electrostatic dipolar feature originated from hybrid orbital interactions. A trade-off-like cooperativity law of the two types of H-bonds was discovered, that is, strengthening in the internal bonds (dO–H) leads to weakening in the external bonds (dO:H) or vice versa. However, the shallow H-bonds exhibit a non-linear cooperativity, whereas the deep H-bonds show a linear cooperativity. We also identified an oxygen backbone cooperativity rule that strengthening the adsorbate–metal interactions has a net effect in analogy to reducing the O–O repulsion within the adlayer. Furthermore, we have discovered several universality classes in geometrical, vibrational, and electronic spaces for the two H-bonding types. Although shared by electronic universality classes, the two contrasting H-bonding types are featured by divergent trends with significant overlapping, where competitive variations in the electrostatic and Pauli repulsion strengths are basic rules for the cooperative H-bonding types. The knowledge of the unconventional H-bonding types expands our current understanding of H-bonding interactions in liquid water and water ices and points to the importance of H-bonding manipulation at electronic levels. These findings not only shed new light on probing the fundamental nature of H-bonds in general but also have insightful implications for resolving the cooperative H-bonding nature of interfacial water, liquid water, water ices, and aqueous solutions.
ISSN: 2590-0498
DOI: 10.1016/j.mtadv.2021.100172
Schools: School of Electrical and Electronic Engineering 
Rights: © 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S2590049821000424-main.pdf3.86 MBAdobe PDFThumbnail

Citations 50

Updated on Feb 18, 2024

Web of ScienceTM
Citations 50

Updated on Oct 26, 2023

Page view(s)

Updated on Feb 26, 2024


Updated on Feb 26, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.