Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/164642
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoh, Samuel Zhi Kangen_US
dc.contributor.authorKu, Cheng Yeawen_US
dc.contributor.authorWong, Kok Binen_US
dc.date.accessioned2023-02-07T05:12:03Z-
dc.date.available2023-02-07T05:12:03Z-
dc.date.issued2023-
dc.identifier.citationKoh, S. Z. K., Ku, C. Y. & Wong, K. B. (2023). Alternating sign property of the perfect matching derangement graph. Journal of Combinatorial Theory. Series A, 194, 105706-. https://dx.doi.org/10.1016/j.jcta.2022.105706en_US
dc.identifier.issn0097-3165en_US
dc.identifier.urihttps://hdl.handle.net/10356/164642-
dc.description.abstractIt was conjectured in the monograph [9] by Godsil and Meagher and in the article [10] by Lindzey that the perfect matching derangement graph M2n possesses the alternating sign property, that is, for any integer partition λ=(λ1,…,λr)⊢n, the sign of the eigenvalue ηλ of M2n is given by sign(ηλ)=(−1)n−λ1. In this paper, we prove that the conjecture is true. Our approach yields a recurrence formula for the eigenvalues of the perfect matching derangement graph as well as a new recurrence formula for the eigenvalues of the permutation derangement graph.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Combinatorial Theory. Series Aen_US
dc.rights© 2022 Elsevier Inc. All rights reserved.en_US
dc.subjectScience::Physicsen_US
dc.titleAlternating sign property of the perfect matching derangement graphen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1016/j.jcta.2022.105706-
dc.identifier.scopus2-s2.0-85141678968-
dc.identifier.volume194en_US
dc.identifier.spage105706en_US
dc.subject.keywordsAssociation Schemesen_US
dc.subject.keywordsPerfect Matchingsen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

Page view(s)

126
Updated on Jul 21, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.