Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/16484
Title: Monitoring ROS generation in single cell by optical fiber-based nano-sensor
Authors: Ewe, Ko Xing.
Keywords: DRNTU::Engineering::Chemical engineering::Biotechnology
Issue Date: 2009
Abstract: This project investigates the nano-sensing ability of optical fiber-based nano-sensor by the detection of Reactive Oxygen Species (ROS) in living smooth muscle cells. The first part of the project discusses the fabrication process of the nano-sensor. Optical fibers were drawn by micropipette puller using “Heat and Pull” technique, producing sharp tapering end measurable in nanometer scale. Silver coating of the tapering end, followed by silanization with APTES and functionalizing with the ROS-dye complete the fabrication of the nano-sensor. The second part discusses the experiments conducted to study the effects of concentration of EDC and NHS (compounds to facilitate activation of ROS-dye) and the length of tapering end in the efficiency of the nano-sensor. Smooth muscle cells and breast cancer cells (MCF-7) are cultured as test samples for ROS detection. Hydrogen peroxide (H2O2) is added to the smooth muscle cells to stimulate ROS production. This facilitates the study of the nano-sensing ability of nano-sensor fabricated by the techniques discussed in the first part. Confocal microscopy is also employed in this study to investigate the effects of H2O2 in ROS production in smooth muscle cells and MCF-7 cells.
URI: http://hdl.handle.net/10356/16484
Schools: School of Chemical and Biomedical Engineering 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
EweKoXing09.pdf
  Restricted Access
2.94 MBAdobe PDFView/Open

Page view(s) 50

641
Updated on May 7, 2025

Download(s)

8
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.