Please use this identifier to cite or link to this item:
Title: Fabrication and characterization of POSS and CNT reinforced chitosan matrix nano-composites
Authors: Lim, Zhi Cheng.
Keywords: DRNTU::Engineering::Chemical engineering::Polymers and polymer manufacture
Issue Date: 2009
Abstract: Polymer-based nanostructured systems have received relevant attention for exhibiting remarkable improvements of mechanical, thermal, optical and other physicochemical properties as compared to its pure components. With the improvements, it has led to the development of its use in many applications in the biomedical field today. In this project, the morphology and mechanical behaviour of nano-composites formed by chitosan and polyhedral oligomeric silsesquioxane (POSS) and carbon nanotubes (CNT) used in applications such as membrane separations were studied, with the objective to find any correlation in the behaviour of the mechanical and thermal properties of nanocomposites with the amount of filler that is added incorporated into the polymer matrix. Different amount of POSS loadings for 2 different types, namely Octa-Ammonium (OA) and Octa Nitro Phenyl Silsesquioxane (ONPS), and single-walled carbon nanotubes (SWCNT) were added into chitosan and the fibres spun using the wet-spinning method. Mechanical tensile tests were conducted to determine the strength of the fibres. Analysis of the morphology of the fibres was conducted using Scanning Electron Microscopy (SEM) and thermal properties of the nano-composites were analysed using Thermogravimetric Analysis (TGA). The results indicated an increase in mechanical properties of the nanocomposites up to a certain percentage of filler added, but a decrease in thermal stability. The improvements were significant for both types of POSS but not significant for SWCNT.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
5.55 MBAdobe PDFView/Open

Page view(s) 50

checked on Sep 27, 2020


checked on Sep 27, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.