Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/164860
Title: GNSS spoofing and anti-spoofing
Authors: Liu, Haoxin
Keywords: Engineering::Electrical and electronic engineering::Satellite telecommunication
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Liu, H. (2022). GNSS spoofing and anti-spoofing. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/164860
Abstract: GNSS (Global Navigation Satellite System) has been developed for several decades and becomes essential for a wide range of technologies in recent years. GNSS provides positioning, navigation, and timing services, which can be used in various aspects. However, civilian GNSS signal is vulnerable. Many spoofing incidents happens in recent years Thus, GNSS spoofing and anti-spoofing techniques have been studied by more and more researchers. The target of GNSS spoofing is to let the GNSS receiver get fake information about its position. Anti-spoofing is the method that counters the spoofing attack. This thesis content is based on GPS. Since GPS is the earliest GNSS, the conclusion based on GPS can be applied to other GNSS. Firstly, this thesis briefly reviews the spoofing and anti-spoofing techniques. Secondly, a GPS positioning process model with a spoofing attack is built, which contains the necessary parts of signal transmission and signal reception. Thirdly, a simulation program is developed based on the model, and a series of simulation spoofing experiments in which spoofing signals have different power levels were conducted. Finally, field spoofing and anti-spoofing experiments were conducted to verify the results of the simulation. The simulation of this thesis finds that the receiver decode less number of satellites when there is a spoofing signal, which may impact the receiver’s capability to calculate its location. More satellites can be decoded as the spoofing signal power increases, which may spoof the receiver to a wrong location. The field experiment shows that a spoofer with higher power succeeds using less time. This thesis also proves that the GPS authentication scheme based on the Chameleon Hash is able to detect spoofing attacks. Keywords: GNSS, GNSS spoofing, GNSS anti-spoofing, Simulation.
URI: https://hdl.handle.net/10356/164860
Schools: School of Electrical and Electronic Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
GNSS_Spoofing_and_Anti_spoofing_submit.pdf
  Restricted Access
23.85 MBAdobe PDFView/Open

Page view(s)

120
Updated on Dec 9, 2023

Download(s)

3
Updated on Dec 9, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.