Please use this identifier to cite or link to this item:
Title: Visualizing higher-fold topology in chiral crystals
Authors: Cochran, Tyler A.
Belopolski, Ilya
Manna, Kaustuv
Yahyavi, Mohammad
Liu, Yiyuan
Sanchez, Daniel S.
Cheng, Zi-Jia
Yang, Xian P.
Multer, Daniel
Yin, Jia-Xin
Borrmann, Horst
Chikina, Alla
Krieger, Jonas A.
Sánchez-Barriga, Jaime
Le Fèvre, Patrick
Bertran, François
Strocov, Vladimir N.
Denlinger, Jonathan D.
Chang, Tay-Rong
Jia, Shuang
Felser, Claudia
Lin, Hsin
Chang, Guoqing
Hasan, M. Zahid
Keywords: Science::Physics
Issue Date: 2023
Source: Cochran, T. A., Belopolski, I., Manna, K., Yahyavi, M., Liu, Y., Sanchez, D. S., Cheng, Z., Yang, X. P., Multer, D., Yin, J., Borrmann, H., Chikina, A., Krieger, J. A., Sánchez-Barriga, J., Le Fèvre, P., Bertran, F., Strocov, V. N., Denlinger, J. D., Chang, T., ...Hasan, M. Z. (2023). Visualizing higher-fold topology in chiral crystals. Physical Review Letters, 066402-1-066402-7.
Project: NRF-NRFF13-2021-0010 
Nanyang Assistant Professorship (NAP) 
Journal: Physical Review Letters 
Abstract: Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions. In this Letter, we leverage a combination of fine-tuned chemical engineering and photoemission spectroscopy with photon energy contrast to discover the higher-fold topology of a chiral crystal. We identify all bulk branches of a higher-fold chiral fermion for the first time, critically important for allowing us to explore unique Fermi arc surface states in multiple interband gaps, which exhibit an emergent ladder structure. Through designer chemical gating of the samples in combination with our measurements, we uncover an unprecedented multigap bulk boundary correspondence. Our demonstration of multigap electronic topology will propel future research on unconventional topological responses.
ISSN: 0031-9007
DOI: 10.1103/PhysRevLett.130.066402
Schools: School of Physical and Mathematical Sciences 
Rights: © 2023 American Physical Society. All rights reserved. This paper was published in Physical Review Letters and is made available with permission of American Physical Society.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
NRS_PRL_v7final.pdfaccepted version5.55 MBAdobe PDFThumbnail

Citations 50

Updated on Feb 19, 2024

Web of ScienceTM
Citations 50

Updated on Oct 30, 2023

Page view(s)

Updated on Feb 26, 2024

Download(s) 50

Updated on Feb 26, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.