Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/165016
Title: Multi-sensor calibration for autonomous container prime mover
Authors: Zhai, Yue
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2023
Publisher: Nanyang Technological University
Source: Zhai, Y. (2023). Multi-sensor calibration for autonomous container prime mover. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/165016
Abstract: Nowadays, self-driving car is becoming increasingly popular, and its implementation in docks is also a trend. To realize intelligent operation, multi-sensor system is needed. In this dissertation, we propose a multi-sensor system on a car with various cameras and LiDARs to simulate the working of the autonomous container prime movers at the dock. To get a general understanding of the surrounding environment, sensor fusion plays a vital role. So, the dissertation mainly focuses on calibrating the whole multi-sensor system. It includes multi-camera calibration, RGB camera and LiDAR calibration. Both target-based and targetless methods are used. We compare and analyze their strengths and appropriate implementation scenarios. For the targetless method, the result is sometimes unstable, so we alleviate the problem by multi-scene calibration. In some cases, the sensors may not have a common field of view, so we propose to chain the transformation using an intermedium sensor. Also, the calibration of a blind-spot LiDAR and a camera is rarely done before, and we extend the generic target-based method to realize it. Qualitative analysis of the calibration result of the system is implemented, and the sensor fusion result shows that the obtained calibrated parameters are accurate. Finally, we compile a calibration tutorial and share our experiment sample dataset on GitHub for further research. The tutorial and dataset are available at https://github.com/ZyueRemi/Tutorial_Lidar_camera_calibration.
URI: https://hdl.handle.net/10356/165016
Schools: School of Electrical and Electronic Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
Amended dissertation.pdf
  Restricted Access
4.86 MBAdobe PDFView/Open

Page view(s)

259
Updated on May 7, 2025

Download(s)

17
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.