Please use this identifier to cite or link to this item:
Title: Novel ultralong and photoactive Bi₂Ti₄O₁₁/TiO₂ heterojunction nanofibers toward efficient textile wastewater treatment
Authors: Juay, Jermyn
Yang, Jia-Cheng E.
Bai, Hongwei
Sun, Darren Delai
Keywords: Engineering::Environmental engineering
Issue Date: 2022
Source: Juay, J., Yang, J. E., Bai, H. & Sun, D. D. (2022). Novel ultralong and photoactive Bi₂Ti₄O₁₁/TiO₂ heterojunction nanofibers toward efficient textile wastewater treatment. RSC Advances, 12(39), 25449-25456.
Journal: RSC Advances 
Abstract: The elimination of dyes from textile wastewater with a lower carbon footprint is highly contingent on the design of green catalysts. Here, we innovatively developed ultralong one-dimensional Bi2Ti4O11/TiO2 heterojunction nanofibers via electrospinning so as to photocatalytically degrade dyes efficiently and sustainably through the utilisation of renewable solar irradiation. The heterostructured Bi2Ti4O11/TiO2 nanofibers exhibited desirable activity in the visible light region through the slight shift of the absorption edge to a longer wavelength. The Bi2Ti4O11/TiO2 nanofibers calcined at 550 °C had a lower optical band gap (3.08 eV) than that of the pure TiO2 (3.32 eV), as evidenced by their higher photocatalytic degradation kinetics of a model dye (Acid Orange 7) (2.5 times greater than those of pure TiO2). The enhanced visible light photocatalytic performance arose from the formation of both the Bi2Ti4O11/TiO2 heterojunction and the effective separation of photogenerated holes and electrons. The employment of ultralong Bi2Ti4O11/TiO2 heterojunction nanofibers for dye removal/decolourisation under visible light is an efficient, cost effective and sustainable solution, which will provide significant insights for practical textile wastewater treatment in view of practical engineering applications.
ISSN: 2046-2069
DOI: 10.1039/d2ra02181a
Schools: School of Civil and Environmental Engineering 
Rights: © 2022 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Files in This Item:
File Description SizeFormat 
d2ra02181a.pdf1.27 MBAdobe PDFThumbnail

Citations 50

Updated on Apr 16, 2024

Web of ScienceTM
Citations 50

Updated on Oct 28, 2023

Page view(s)

Updated on Apr 21, 2024


Updated on Apr 21, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.