Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/165540
Title: Synergistic use of gradient flipping and phase prediction for inline electron holography
Authors: Ozsoy-Keskinbora, Cigdem
Van den Broek, Wouter
Boothroyd, Chris
Dunin-Borkowski, Rafal E.
van Aken, Peter A.
Koch, Christoph T.
Keywords: Engineering::Materials
Issue Date: 2022
Source: Ozsoy-Keskinbora, C., Van den Broek, W., Boothroyd, C., Dunin-Borkowski, R. E., van Aken, P. A. & Koch, C. T. (2022). Synergistic use of gradient flipping and phase prediction for inline electron holography. Scientific Reports, 12(1), 13294-. https://dx.doi.org/10.1038/s41598-022-17373-y
Journal: Scientific Reports 
Abstract: Inline holography in the transmission electron microscope is a versatile technique which provides real-space phase information that can be used for the correction of imaging aberrations, as well as for measuring electric and magnetic fields and strain distributions. It is able to recover high-spatial-frequency contributions of the phase effectively but suffers from the weak transfer of low-spatial-frequency information, as well as from incoherent scattering. Here, we combine gradient flipping and phase prediction in an iterative flux-preserving focal series reconstruction algorithm with incoherent background subtraction that gives extensive access to the missing low spatial frequencies. A procedure for optimizing the reconstruction parameters is presented, and results from Fe-filled C nanospheres, and MgO cubes are compared with phase images obtained using off-axis holography.
URI: https://hdl.handle.net/10356/165540
ISSN: 2045-2322
DOI: 10.1038/s41598-022-17373-y
10.1038/s41598-022-17373-y
Schools: School of Materials Science and Engineering 
Research Centres: Facility for Analysis, Characterisation, Testing and Simulation 
Rights: © 2022 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
264 Gradient flipping 2019.pdf3.83 MBAdobe PDFThumbnail
View/Open

Page view(s)

145
Updated on May 22, 2024

Download(s) 50

39
Updated on May 22, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.