Please use this identifier to cite or link to this item:
Title: Biopolymeric fibrous scaffolds for tissue engineering.
Authors: Chen, Jasmine Shuwen.
Keywords: DRNTU::Engineering::Chemical engineering::Biotechnology
Issue Date: 2009
Abstract: Scaffolds play a vital role in tissue engineering in mimicking the extra cellular matrix, such that it provides suitable environment for tissue regeneration. Recent studies have shown that Pullulan is a potential biomaterial for vascular engineering due to its biocompatibility and superior mechanical strength. The feasibility of using Pullulan as a scaffolding material is still at its infancy stage; therefore, further the exploration of the applications of Pullulan is required. The purpose of this project is to conduct preliminary studies to investigate the viability of fabricating Pullulan scaffolds that can enhance cell development through the use of the electrospinning technique. Various electrospinning parameters can greatly influence the construct of the fibers. Therefore, this project focuses on determining the optimum electrospinning parameters that are able to fabricate a scaffold that constitutes uniform morphologies for cell support. Different polymer blend ratios of Pullulan and Dextran, syringe tip to collector distances, flow rates, applied voltages, polymer concentrations, types of solvent, solvent concentration and crosslinker concentrations were investigated with the aim of producing uniform fiber diameters and good spin ability. The image analysis by scanning electron microscopy and image analysis software Image J, show that fibers could be successfully electrospun into the nanometer region of 200-500nm. Mechanical strengths measured by Instron tensile tester showed that a higher crosslinker concentration could produce scaffolds with higher elastic modulus. These findings would be useful in optimization of a scaffold from the polymer blend of Pullulan and Dextran through electrospinning.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
4.27 MBAdobe PDFView/Open

Page view(s) 50

checked on Sep 28, 2020

Download(s) 50

checked on Sep 28, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.