Please use this identifier to cite or link to this item:
Title: Load forecast for microgrid energy management system (MEMS)
Authors: Choo, Boon Kian.
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Electric power::Production, transmission and distribution
Issue Date: 2009
Abstract: In this 21st century, traditional power generation is no longer sustainable to meet the growing demands of energy consumption from consumers. Over the past decades, increased industrialization and urbanization activities have resulted in depletion of natural resources, global warming, rising inflation and economic instability. A new generation of power generation that focuses on demand side management should be taken into serious consideration. It allows greater freedom, autonomy and responsibility for consumers to plan their own energy consumption. Microgrid, a controllable load from the view point of the main grid, purchases energy from the grid when prices and load demand on the grid are low and likewise, feeds on its own generation when prices and load demand on the grid are high. Microgrid increases the efficiency of cogeneration through district cooling systems. It saves costs and enhances the stability of the system, allowing more communication and participation between the user and the service providers. This thesis aims to provide an overview to the load forecast of a microgrid energy management system based on fuzzy logic and simulation modeling to cater to the presence of fuzziness in load prediction. The same solution algorithm will be used to discuss the forecasted electricity price of MEMS.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
FYP Full Text Report1.35 MBAdobe PDFView/Open

Page view(s)

Updated on Nov 23, 2020


Updated on Nov 23, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.