Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYip, Rayna Weiqinen_US
dc.identifier.citationYip, R. W. (2023). Chemical and enzymatic synthesis of Aureocin A53 peptide conjugates. Final Year Project (FYP), Nanyang Technological University, Singapore.
dc.description.abstractAureocin A53 (AucA) is a bacteriocin holding great potential as a drug to combat antimicrobial resistance. Displaying activity against multidrug-resistant staphylococcal strains, AucA penetrates non-specifically to the cytoplasmic membrane, resulting in lysis. Here, the use of microwave-assisted solid phase peptide synthesis (SPPS) to produce AucA was documented for the first time. Additionally, two AucA peptide conjugates were synthesized by enzymatic and chemical means. The lipopeptide contained the covalent attachment of myristic acid to the N-terminal amine of AucA, while the glycopeptide contained the covalent attachment of maltose to the C-terminal hydrazide of the N-acetylated peptide. Circular dichroism (CD) spectra detected the presence of ⍺-helical structures for all peptides and peptide conjugates. Minimum inhibitory concentration (MIC) assay revealed the ability of native AucA to target S. aureus at micromolar concentrations, with a MIC value of 6.25 µg/mL. However, both peptide conjugates displayed lowered antimicrobial activities than native AucA, likely due to steric hindrance and N-acetylation of the lipopeptide (MIC >100 µg/mL) and glycopeptide (MIC 12.5 µg/mL), respectively. In terms of proteolytic stability against trypsin endopeptidase, a near-complete degradation was observed for the lipopeptide, while N-acetylation was postulated to enhance the proteolytic stability of AucA, with no further enhancement after maltose attachment.en_US
dc.publisherNanyang Technological Universityen_US
dc.subjectScience::Biological sciencesen_US
dc.titleChemical and enzymatic synthesis of Aureocin A53 peptide conjugatesen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorLiu Chuan Faen_US
dc.contributor.schoolSchool of Biological Sciencesen_US
dc.description.degreeBachelor of Science in Biological Sciencesen_US
item.fulltextWith Fulltext-
Appears in Collections:SBS Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
Final report pdf.pdf
  Restricted Access
1.24 MBAdobe PDFView/Open

Page view(s)

Updated on Apr 14, 2024


Updated on Apr 14, 2024

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.