Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/167719
Title: Finite element analysis of rectangular composite plates subjected to a uniformly distributed load
Authors: Ng, Luke Yong Ning
Keywords: Engineering::Mechanical engineering::Mechanics and dynamics
Issue Date: 2023
Publisher: Nanyang Technological University
Source: Ng, L. Y. N. (2023). Finite element analysis of rectangular composite plates subjected to a uniformly distributed load. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/167719
Project: B029 
Abstract: This project aims to analyse the effect of coupling on the bending response of a rectangular composite plate subjected to a uniformly distributed load. The commercially available finite element software, ANSYS, is used to study the effect of the coupling of B16 and B26 in anti-symmetric laminated composite plate with various types of simple supports. The anti-symmetric layup is [+theta, -theta]n where n represents groups of anti-symmetric stack and n=1, 2, 4 and 5 are investigated. The scope of work includes the finite element modelling and analysis of a case study with known exact solution for validation of the finite element model. After which this finite element model are used to study the effect of coupling and the effect of the different types of simple supports on the bending of anti-symmetric laminated composite plates subjected to a uniformly distributed load. The results presented in this report for the case study demonstrate good correlation with the exact solution, thereby validating the finite element model. It is worth noting that only the simply supported 3 condition allowed for obtaining results through theoretical calculations. By comparing these theoretical values to the values obtained through ANSYS simulations, the percentage error between the two sets of values was found to be less than 6%. This level of agreement strongly supports the validity of all the results obtained through the FEA simulations. The results of this project revealed several important trends in the behaviour of composite materials. Specifically, it was observed that increasing the fiber orientation from 0 to 90 degrees resulted in decreased deflection. Similarly, increasing the number of ply layers from 2 to 10 also led to a decrease in deflection. Furthermore, the project demonstrated the significant impact of the coupling effect on composite behaviour.
URI: https://hdl.handle.net/10356/167719
Schools: School of Mechanical and Aerospace Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_B029_Luke_Ng.pdf
  Restricted Access
4.34 MBAdobe PDFView/Open

Page view(s)

178
Updated on May 7, 2025

Download(s)

11
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.