Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/168876
Title: Multilevel Markov chain Monte Carlo for Bayesian inverse problem for Navier-Stokes equation
Authors: Yang, Juntao
Hoang, Viet Ha
Keywords: Science::Mathematics
Issue Date: 2023
Source: Yang, J. & Hoang, V. H. (2023). Multilevel Markov chain Monte Carlo for Bayesian inverse problem for Navier-Stokes equation. Inverse Problems and Imaging, 17(1), 106-135. https://dx.doi.org/10.3934/ipi.2022033
Journal: Inverse Problems and Imaging 
Abstract: Bayesian inverse problems for inferring the unknown forcing and initial condition of Navier-Stokes equation play important roles in many practi-cal areas. The computation cost of sampling the posterior probability measure can be exceedingly high. We develop the Finite Element Multilevel Markov Chain Monte Carlo (FE-MLMCMC) sampling method for approximating ex-pectation with respect to the posterior probability measure of quantities of interest for a model problem of Navier-Stokes equation in the two dimensional periodic torus. We first consider the case where the forcing and the initial condition are bounded for all the realizations and depend linearly on a countable set of random variables which are uniformly distributed in a compact interval. We establish the essentially optimal convergence rate of the method and verify it numerically. The method follows from that developed in V. H. Hoang, Ch. Schwab and A. M. Stuart, Inverse problems, vol. 29, 2013 for inferring the coefficients of linear elliptic forward equations under the uniform prior probability measure. In the case of the Gaussian prior probability measure, numerical re-sults, using the MLMCMC method developed for the Gaussian prior in V. H. Hoang, J. H. Quek and Ch. Schwab, Inverse problems, vol. 36, 2020, indicate the essentially optimal convergence rates. However, a rigorous theory for the MLMCMC sampling procedure is not available, due to the non-integrability with respect to the Gaussian prior of the theoretical finite element errors of the forward solvers that are available in the literature.
URI: https://hdl.handle.net/10356/168876
ISSN: 1930-8337
DOI: 10.3934/ipi.2022033
Schools: School of Physical and Mathematical Sciences 
Rights: © 2023 American Institute of Mathematical Sciences. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Mar 14, 2025

Page view(s)

173
Updated on Mar 20, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.