Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/170189
Title: Scope, characteristics, behavior change techniques, and quality of conversational agents for mental health and well-being: systematic assessment of apps
Authors: Lin, Xiaowen
Martinengo, Laura
Jabir, Ahmad Ishqi
Ho, Andy Hau Yan
Car, Josip
Atun, Rifat
Tudor Car, Lorainne
Keywords: Science::Medicine::Computer applications
Issue Date: 2023
Source: Lin, X., Martinengo, L., Jabir, A. I., Ho, A. H. Y., Car, J., Atun, R. & Tudor Car, L. (2023). Scope, characteristics, behavior change techniques, and quality of conversational agents for mental health and well-being: systematic assessment of apps. Journal of Medical Internet Research, 25, e45984-. https://dx.doi.org/10.2196/45984
Project: RG36/20 
Journal: Journal of Medical Internet Research 
Abstract: Background: Mental disorders cause substantial health-related burden worldwide. Mobile health interventions are increasingly being used to promote mental health and well-being, as they could improve access to treatment and reduce associated costs. Behavior change is an important feature of interventions aimed at improving mental health and well-being. There is a need to discern the active components that can promote behavior change in such interventions and ultimately improve users’ mental health. Objective: This study systematically identified mental health conversational agents (CAs) currently available in app stores and assessed the behavior change techniques (BCTs) used. We further described their main features, technical aspects, and quality in terms of engagement, functionality, esthetics, and information using the Mobile Application Rating Scale. Methods: The search, selection, and assessment of apps were adapted from a systematic review methodology and included a search, 2 rounds of selection, and an evaluation following predefined criteria. We conducted a systematic app search of Apple’s App Store and Google Play using 42matters. Apps with CAs in English that uploaded or updated from January 2020 and provided interventions aimed at improving mental health and well-being and the assessment or management of mental disorders were tested by at least 2 reviewers. The BCT taxonomy v1, a comprehensive list of 93 BCTs, was used to identify the specific behavior change components in CAs. Results: We found 18 app-based mental health CAs. Most CAs had <1000 user ratings on both app stores (12/18, 67%) and targeted several conditions such as stress, anxiety, and depression (13/18, 72%). All CAs addressed >1 mental disorder. Most CAs (14/18, 78%) used cognitive behavioral therapy (CBT). Half (9/18, 50%) of the CAs identified were rule based (ie, only offered predetermined answers) and the other half (9/18, 50%) were artificial intelligence enhanced (ie, included open-ended questions). CAs used 48 different BCTs and included on average 15 (SD 8.77; range 4-30) BCTs. The most common BCTs were 3.3 “Social support (emotional),” 4.1 “Instructions for how to perform a behavior,” 11.2 “Reduce negative emotions,” and 6.1 “Demonstration of the behavior.” One-third (5/14, 36%) of the CAs claiming to be CBT based did not include core CBT concepts. Conclusions: Mental health CAs mostly targeted various mental health issues such as stress, anxiety, and depression, reflecting a broad intervention focus. The most common BCTs identified serve to promote the self-management of mental disorders with few therapeutic elements. CA developers should consider the quality of information, user confidentiality, access, and emergency management when designing mental health CAs. Future research should assess the role of artificial intelligence in promoting behavior change within CAs and determine the choice of BCTs in evidence-based psychotherapies to enable systematic, consistent, and transparent development and evaluation of effective digital mental health interventions.
URI: https://hdl.handle.net/10356/170189
ISSN: 1438-8871
DOI: 10.2196/45984
Schools: Lee Kong Chian School of Medicine (LKCMedicine) 
School of Social Sciences 
Research Centres: Centre for Population Health Sciences 
Rights: © Xiaowen Lin, Laura Martinengo, Ahmad Ishqi Jabir, Andy Hau Yan Ho, Josip Car, Rifat Atun, Lorainne Tudor Car. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 18.07.2023. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:LKCMedicine Journal Articles

SCOPUSTM   
Citations 50

8
Updated on May 4, 2025

Page view(s)

186
Updated on May 5, 2025

Download(s) 50

71
Updated on May 5, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.