Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/170924
Title: Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs
Authors: Greaves, Gary Royden Watson
Syatriadi, Jeven
Keywords: Science::Mathematics
Issue Date: 2024
Source: Greaves, G. R. W. & Syatriadi, J. (2024). Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs. Journal of Combinatorial Theory, Series A, 201, 105812-. https://dx.doi.org/10.1016/j.jcta.2023.105812
Project: RG21/20 
RG23/20. 
Journal: Journal of Combinatorial Theory, Series A 
Abstract: We show that the maximum cardinality of an equiangular line system in $\mathbb R^{18}$ is at most $59$. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial $(x-22)(x-2)^{42} (x+6)^{15} (x+8)^2$.
URI: https://hdl.handle.net/10356/170924
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2023.105812
Schools: School of Physical and Mathematical Sciences 
Rights: © 2023 Elsevier Inc. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Page view(s)

128
Updated on Mar 16, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.