Please use this identifier to cite or link to this item:
Title: Numerical simulation of chaotic vibration
Authors: Ng, Kheng Hong.
Keywords: DRNTU::Engineering::Mechanical engineering::Mechanics and dynamics
Issue Date: 2009
Abstract: Chaotic vibration is a new nonlinear vibration phenomenon where a periodic input to a nonlinear system will lead to a non-periodic output. Extensive simulation of chaotic vibration for a single degree of freedom mechanical system with backlash stiffness nonlinearity will be carried out based on certain excitation range in this project. MATLAB will be used to solve a set of nonlinear equations in time that represents the system by the means of numerical algorithms. Both qualitative and quantitative techniques to detect the existence of chaotic vibration will be studied. However, the focus for this project will be only on the qualitative analysis. Graphical solutions such as time responses, state space trajectories, Poincaré maps, power spectrum and bifurcation diagrams will be used to demonstrate the chaotic nature of the vibration. The time response plots will indicate the behavior of the system with respect to time. The state space trajectories represent the state of the system as a whole while Poincaré maps will aim to show the presence of strange attractors. The power spectrums portray the nature of the system with respect to frequency. Bifurcation diagrams are able to prove the infinite periodic doubling effect that lead to chaos. This simulation seeks to investigate the influence of parameters on the behavior of the system. The parameters used will be the both the excitation amplitude and frequency of the sinusoidal loading force, damping and the initial conditions. At each time, only a set of parameters will be varied.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Numerical Simulation of Chaotic Vibrations.pdf
  Restricted Access
14.59 MBAdobe PDFView/Open

Page view(s) 20

checked on Sep 26, 2020

Download(s) 20

checked on Sep 26, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.