Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/17163
Title: Design and implementation of asynchronous low power sub-threshold memory circuit
Authors: Khor, Boon Pin.
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Integrated circuits
Issue Date: 2009
Abstract: This project presents the design and implementation of a low-power asynchronous memory circuit operating in subthreshold region down to 0.2V. The memory circuit will be employed in a low-power asynchronous subthreshold FIR filter. The purposes of this project are to investigate the power and energy dissipation as well as signal propagation delay time of the memory circuit operation at subthreshold region using IBM 0.13µm CMRF8SF process technology Low Power (LP) transistor model. The design and simulation of the memory circuit uses Synopsys NanoSim and Cadence Virtuoso. First, a SPICE file circuit netlist is created and simulated using NanoSim. Subsequently, the schematic and layout of the circuit is built using Virtuoso. The goal for this project is to ensure that the memory circuit operates robustly at 0.2V. The simulation result shows that using IBM 0.13µm CMRF8SF LP transistor model, the memory circuit can operate robustly at 0.18V, with average power dissipation of 22pW, write delay 212µs and read delay 215µs. A SRAM memory circuit is designed and simulated to benchmark the performance of the proposed memory circuit. The SRAM memory circuit works as low as 0.42V. The proposed asynchronous low power subthreshold memory circuit can operate at much lower operating voltage (0.18V) compared to conventional SRAM. Another benchmark circuit is the same circuit design using IBM 0.13µm CMRF8SF Regular Threshold Voltage (RVT) transistor model. Using RVT transistor, the circuit operates at 0.18V with average power dissipation of 2911pW, write delay 1483ns and read delay 1803ns. LP transistor model has a low power dissipation (22pW) advantage over RVT transistor model.
URI: http://hdl.handle.net/10356/17163
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
E2048-081.pdf
  Restricted Access
2.24 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.