Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/172143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDao, Fu-Yingen_US
dc.contributor.authorLiu, Meng-Luen_US
dc.contributor.authorSu, Weien_US
dc.contributor.authorLv, Haoen_US
dc.contributor.authorZhang, Zhao-Yueen_US
dc.contributor.authorLin, Haoen_US
dc.contributor.authorLiu, Lien_US
dc.date.accessioned2023-11-27T01:57:25Z-
dc.date.available2023-11-27T01:57:25Z-
dc.date.issued2023-
dc.identifier.citationDao, F., Liu, M., Su, W., Lv, H., Zhang, Z., Lin, H. & Liu, L. (2023). AcrPred: a hybrid optimization with enumerated machine learning algorithm to predict anti-CRISPR proteins. International Journal of Biological Macromolecules, 228, 706-714. https://dx.doi.org/10.1016/j.ijbiomac.2022.12.250en_US
dc.identifier.issn0141-8130en_US
dc.identifier.urihttps://hdl.handle.net/10356/172143-
dc.description.abstractCRISPR-Cas, as a tool for gene editing, has received extensive attention in recent years. Anti-CRISPR (Acr) proteins can inactivate the CRISPR-Cas defense system during interference phase, and can be used as a potential tool for the regulation of gene editing. In-depth study of Anti-CRISPR proteins is of great significance for the implementation of gene editing. In this study, we developed a high-accuracy prediction model based on two-step model fusion strategy, called AcrPred, which could produce an AUC of 0.952 with independent dataset validation. To further validate the proposed model, we compared with published tools and correctly identified 9 of 10 new Acr proteins, indicating the strong generalization ability of our model. Finally, for the convenience of related wet-experimental researchers, a user-friendly web-server AcrPred (Anti-CRISPR proteins Prediction) was established at http://lin-group.cn/server/AcrPred, by which users can easily identify potential Anti-CRISPR proteins.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Biological Macromoleculesen_US
dc.rights© 2022 Elsevier B.V. All rights reserved.en_US
dc.subjectScience::Biological sciencesen_US
dc.titleAcrPred: a hybrid optimization with enumerated machine learning algorithm to predict anti-CRISPR proteinsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Biological Sciencesen_US
dc.identifier.doi10.1016/j.ijbiomac.2022.12.250-
dc.identifier.pmid36584777-
dc.identifier.scopus2-s2.0-85145263258-
dc.identifier.volume228en_US
dc.identifier.spage706en_US
dc.identifier.epage714en_US
dc.subject.keywordsAnti-CRISPR Proteinen_US
dc.subject.keywordsMachine Learningen_US
dc.description.acknowledgementThis work was supported by a grant from the Sichuan Provincial Science Fund for Distinguished Young Scholars (2020JDJQ0012) and the National Natural Science Foundation of China (62272085). Fu-Ying Dao is supported by China Scholarship Council to visit Nanyang Technological University.en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SBS Journal Articles

SCOPUSTM   
Citations 10

35
Updated on Oct 6, 2024

Page view(s)

102
Updated on Oct 4, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.