Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/172407
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZeng, Zhipingen_US
dc.contributor.authorGan, Liyongen_US
dc.contributor.authorYang, Hongbinen_US
dc.contributor.authorSu, Xiaozhien_US
dc.contributor.authorGao, Jiajianen_US
dc.contributor.authorLiu, Weien_US
dc.contributor.authorMatsumoto, Hiroakien_US
dc.contributor.authorGong, Junen_US
dc.contributor.authorZhang, Junmingen_US
dc.contributor.authorCai, Weizhenen_US
dc.contributor.authorZhang, Zheyeen_US
dc.contributor.authorYan, Yiboen_US
dc.contributor.authorLiu, Binen_US
dc.contributor.authorChen, Pengen_US
dc.date.accessioned2023-12-12T08:39:17Z-
dc.date.available2023-12-12T08:39:17Z-
dc.date.issued2021-
dc.identifier.citationZeng, Z., Gan, L., Yang, H., Su, X., Gao, J., Liu, W., Matsumoto, H., Gong, J., Zhang, J., Cai, W., Zhang, Z., Yan, Y., Liu, B. & Chen, P. (2021). Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO₂ reduction and oxygen evolution. Nature Communications, 12(1), 4088-. https://dx.doi.org/10.1038/s41467-021-24052-5en_US
dc.identifier.issn2041-1723en_US
dc.identifier.urihttps://hdl.handle.net/10356/172407-
dc.description.abstractWhile inheriting the exceptional merits of single atom catalysts, diatomic site catalysts (DASCs) utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. Herein, a DASC consisting of nickel-iron hetero-diatomic pairs anchored on nitrogen-doped graphene is synthesized. It exhibits extraordinary electrocatalytic activities and stability for both CO2 reduction reaction (CO2RR) and oxygen evolution reaction (OER). Furthermore, the rechargeable Zn-CO2 battery equipped with such bifunctional catalyst shows high Faradaic efficiency and outstanding rechargeability. The in-depth experimental and theoretical analyses reveal the orbital coupling between the catalytic iron center and the adjacent nickel atom, which leads to alteration in orbital energy level, unique electronic states, higher oxidation state of iron, and weakened binding strength to the reaction intermediates, thus boosted CO2RR and OER performance. This work provides critical insights to rational design, working mechanism, and application of hetero-DASCs.en_US
dc.description.sponsorshipAgency for Science, Technology and Research (A*STAR)en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relationA1983c0025en_US
dc.relationA20E5c0080en_US
dc.relationMOE2017-T2-2- 005en_US
dc.relationMOET2EP10120-0002en_US
dc.relationRG4/20en_US
dc.relation.ispartofNature Communicationsen_US
dc.rights© 2021 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.en_US
dc.subjectEngineering::Chemical engineeringen_US
dc.titleOrbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO₂ reduction and oxygen evolutionen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemistry, Chemical Engineering and Biotechnologyen_US
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.identifier.doi10.1038/s41467-021-24052-5-
dc.description.versionPublished versionen_US
dc.identifier.pmid34215728-
dc.identifier.scopus2-s2.0-85109149479-
dc.identifier.issue1en_US
dc.identifier.volume12en_US
dc.identifier.spage4088en_US
dc.subject.keywordsCarbon Dioxideen_US
dc.subject.keywordsCatalysisen_US
dc.description.acknowledgementThis work was supported by AME-IRG grants (A1983c0025, A20E5c0080) from Agency for Science, Technology and Research of Singapore, AcRF tier 2 grants (MOE2017-T2-2- 005, MOET2EP10120-0002) and an AcRF tier 1 grant (RG4/20) from Ministry of Education (Singapore), National Natural Science Foundation of China (NSFC, Grant Nos. 12074048 and 22075195), One-hundred Talents program of Sun Yat-sen University and Jiangsu Specially Appointed Professor program. Wen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:CCEB Journal Articles
Files in This Item:
File Description SizeFormat 
s41467-021-24052-5.pdf2.52 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 1

352
Updated on Mar 16, 2025

Page view(s)

143
Updated on Mar 20, 2025

Download(s) 50

27
Updated on Mar 20, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.