Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/173440
Title: Effects of non-Markovianity in quantum compositions of channels with indefinite causal order
Authors: Cheong, Jian Wei
Keywords: Physics
Issue Date: 2023
Publisher: Nanyang Technological University
Source: Cheong, J. W. (2023). Effects of non-Markovianity in quantum compositions of channels with indefinite causal order. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/173440
Abstract: Quantum compositions of channels can grant advantages over classical compositions in quantum information processing or thermodynamical tasks. One of such quantum composition is one with indefinite causal order, where multiple quantum channels are placed in a superposition of different causal or operation orders. The advantages of indefinite causal order were demonstrated in an experimentally realizable setup known as the quantum switch and were often attributed to this new quantum resource of indefinite causality, but some doubts and disagreements still remains as compositions without indefinite causal order can achieve the same advantages. In this work, we proposed that the quantum switch's uniqueness lies in its ability to exhibit coherent non-Markovianity, where memory effects acts across different paths of superposition. We showed that the quantum switch violates completely positive or CP-divisibility and thus has intrinsic non-Markovianity in its evolution, which allows for non-Markovian backflow of information from the environment. This backflow of information can then play a role in the many advantages seen in the quantum switch, and by extending the quantum switch operation such that the non-Markovianity is controllable, we showed that these advantages depend on the presence and amount of non-Markovianity, achieving the quantum switch case when the system is fully non-Markovian. Particularly, we demonstrated this for the quantum switch's advantages in communication capacities, work extraction via daemonic ergotropy, and refrigeration via heat extraction. Other quantum compositions that are often compared to indefinite causal order, such as the superposition of independent channels and superposition of trajectories, are also captured by this extended construction of the quantum switch, and we showed that their difference with the quantum switch lies in the presence or absence of non-Markovianity. Our work suggests that non-Markovianity is an important recipe for the quantum switch or indefinite causal order, and is a nonnegligible factor for its advantages.
URI: https://hdl.handle.net/10356/173440
DOI: 10.32657/10356/173440
Schools: School of Physical and Mathematical Sciences 
Rights: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
thesis_new.pdf7.02 MBAdobe PDFThumbnail
View/Open

Page view(s)

134
Updated on Sep 11, 2024

Download(s) 50

147
Updated on Sep 11, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.