Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/173620
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Sumanen_US
dc.contributor.authorChakraborty, Debjanien_US
dc.contributor.authorKóczy, László T.en_US
dc.date.accessioned2024-02-19T06:36:51Z-
dc.date.available2024-02-19T06:36:51Z-
dc.date.issued2023-
dc.identifier.citationDas, S., Chakraborty, D. & Kóczy, L. T. (2023). Forward and backward fuzzy rule base interpolation using fuzzy geometry. Iranian Journal of Fuzzy Systems, 20(3), 127-146. https://dx.doi.org/10.22111/ijfs.2023.7643en_US
dc.identifier.issn1735-0654en_US
dc.identifier.urihttps://hdl.handle.net/10356/173620-
dc.description.abstractFuzzy rule interpolation (FRI) predicts an accountable outcome of a possible course of action in sparse fuzzy rule base system (FRBS). The geometry based linear fuzzy rule interpolation (GLFRI) is extended for multi-dimensional fuzzy rule base interpolation. Expansion/contraction (EC) of triangular, trapezoidal and complex polygonal fuzzy sets has been also proposed which enables the proposed FRI method to incorporate with fuzzy rules which include triangular, trapezoidal, hexagonal or complex fuzzy sets. The study further extends to introduce the process of backward rule base interpolation. It has been shown that the scale and move transformation-based FRI method can yield a non-convex fuzzy consequent which can be avoided by using the proposed method. The proposed method performs better without any risk of obtaining non-convex fuzzy consequent. The efficiency of proposed forward and backward FRI methods is projected with several numerical examples. A detailed comparison of EC transformation with scale and move transformation is also presented here.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relationMOE2019-T2-2-040en_US
dc.relation.ispartofIranian Journal of Fuzzy Systemsen_US
dc.rights© Iranian Journal of Fuzzy Systems. This is an open-access article distributed under the terms of the Creative Commons License.en_US
dc.subjectComputer and Information Scienceen_US
dc.titleForward and backward fuzzy rule base interpolation using fuzzy geometryen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.identifier.doi10.22111/ijfs.2023.7643-
dc.description.versionPublished versionen_US
dc.identifier.scopus2-s2.0-85160301260-
dc.identifier.issue3en_US
dc.identifier.volume20en_US
dc.identifier.spage127en_US
dc.identifier.epage146en_US
dc.subject.keywordsInverse rule base interpolationen_US
dc.subject.keywordsScale and move transformationen_US
dc.description.acknowledgementThe first author acknowledges the support given by MoE, Singapore, Tier-2 grant number MOE2019-T2-2-040. The third author acknowledges the support given by National Research, Development and Innovation Office (NKFIH), grant no. K108405.en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SCSE Journal Articles
Files in This Item:
File Description SizeFormat 
IJFS_Volume 20_Issue 3_Pages 127-146.pdf344.38 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

4
Updated on Sep 16, 2024

Page view(s)

70
Updated on Sep 20, 2024

Download(s)

31
Updated on Sep 20, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.