Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/173766
Title: Allosteric inhibition of the T cell receptor by a designed membrane ligand
Authors: Ye, Yujie
Morita, Shumpei
Chang, Justin J.
Buckley, Patrick M.
Wilhelm, Kiera B.
DiMaio, Daniel
Groves, Jay T.
Barrera, Francisco N.
Keywords: Chemistry
Issue Date: 2023
Source: Ye, Y., Morita, S., Chang, J. J., Buckley, P. M., Wilhelm, K. B., DiMaio, D., Groves, J. T. & Barrera, F. N. (2023). Allosteric inhibition of the T cell receptor by a designed membrane ligand. ELife, 12, e82861-. https://dx.doi.org/10.7554/eLife.82861
Project: DGE-2139841 
R35CA242462 
R35GM140846 
T32AI055403 
Journal: eLife 
Abstract: The T cell receptor (TCR) is a complex molecular machine that directs the activation of T cells, allowing the immune system to fight pathogens and cancer cells. Despite decades of investigation, the molecular mechanism of TCR activation is still controversial. One of the leading activation hypotheses is the allosteric model. This model posits that binding of pMHC at the extracellular domain triggers a dynamic change in the transmembrane (TM) domain of the TCR subunits, which leads to signaling at the cytoplasmic side. We sought to test this hypothesis by creating a TM ligand for TCR. Previously we described a method to create a soluble peptide capable of inserting into membranes and binding to the TM domain of the receptor tyrosine kinase EphA2 (Alves et al., eLife, 2018). Here, we show that the approach is generalizable to complex membrane receptors, by designing a TM ligand for TCR. We observed that the designed peptide caused a reduction of Lck phosphorylation of TCR at the CD3ζ subunit in T cells. As a result, in the presence of this peptide inhibitor of TCR (PITCR), the proximal signaling cascade downstream of TCR activation was significantly dampened. Co-localization and co-immunoprecipitation in diisobutylene maleic acid (DIBMA) native nanodiscs confirmed that PITCR was able to bind to the TCR. AlphaFold-Multimer predicted that PITCR binds to the TM region of TCR, where it interacts with the two CD3ζ subunits. Our results additionally indicate that PITCR disrupts the allosteric changes in the compactness of the TM bundle that occur upon TCR activation, lending support to the allosteric TCR activation model. The TCR inhibition achieved by PITCR might be useful to treat inflammatory and autoimmune diseases and to prevent organ transplant rejection, as in these conditions aberrant activation of TCR contributes to disease.
URI: https://hdl.handle.net/10356/173766
ISSN: 2050-084X
DOI: 10.7554/eLife.82861
Research Centres: Institute for Digital Molecular Analytics and Science (IDMxS)
Rights: © 2023 Ye et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:IDMxS Journal Articles

Files in This Item:
File Description SizeFormat 
elife-82861-v1.pdf6.99 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

1
Updated on Sep 4, 2024

Page view(s)

55
Updated on Sep 11, 2024

Download(s) 50

23
Updated on Sep 11, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.