Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/173814
Title: | The cost of imperfect knowledge: how epistemic uncertainties influence flood hazard assessments | Authors: | Balbi, Mariano Lallemant, David |
Keywords: | Earth and Environmental Sciences | Issue Date: | 2023 | Source: | Balbi, M. & Lallemant, D. (2023). The cost of imperfect knowledge: how epistemic uncertainties influence flood hazard assessments. Water Resources Research, 59(11), e2023WR035685-. https://dx.doi.org/10.1029/2023WR035685 | Project: | NRF-NRFF2018-06 | Journal: | Water Resources Research | Abstract: | Classical approaches to flood hazard are obtained by the concatenation of a recurrence model for the events (i.e., an extreme river discharge) and an inundation model that propagates the discharge into a flood extent. The classical approach, however, uses “best-fit” models that do not include uncertainty from incomplete knowledge or limited data availability. The inclusion of these, so called epistemic uncertainties, can significantly impact flood hazard estimates and the corresponding decision-making process. We propose a simulation approach to robustly account for uncertainty in model's parameters, while developing a useful probabilistic output of flood hazard for further risk assessments via the Bayesian predictive posterior distribution of water depths. A Peaks-Over-Threshold Bayesian analysis is performed for future events simulation, and a pseudo-likelihood probabilistic approach for the calibration of the inundation model is used to compute uncertain water depths. The annual probability averaged over all possible models’ parameters is used to develop hazard maps that account for epistemic uncertainties. Results are compared to traditional hazard maps, showing that not including epistemic uncertainties can underestimate the hazard and lead to non-conservative designs, and that this trend increases with return period. Results also show that the influence of the uncertainty in the future occurrence of discharge events is predominant over the inundation simulator uncertainties for the case study. | URI: | https://hdl.handle.net/10356/173814 | ISSN: | 0043-1397 | DOI: | 10.1029/2023WR035685 | Research Centres: | Earth Observatory of Singapore | Rights: | © 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | EOS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Water Resources Research - 2023 - Balbi - The Cost of Imperfect Knowledge How Epistemic Uncertainties Influence Flood.pdf | 1.35 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
50
1
Updated on Sep 9, 2024
Page view(s)
66
Updated on Sep 15, 2024
Download(s) 50
29
Updated on Sep 15, 2024
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.