Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/173817
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJayanth Kumar Narayanaen_US
dc.date.accessioned2024-02-29T03:37:15Z-
dc.date.available2024-02-29T03:37:15Z-
dc.date.issued2024-
dc.identifier.citationJayanth Kumar Narayana (2024). Debugging lung diseases: applying mathematical techniques for precision medicine on the pulmonary microbiome through modelling, data integration and machine learning. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/173817en_US
dc.identifier.urihttps://hdl.handle.net/10356/173817-
dc.description.abstractBackground: The pulmonary microbiome plays a crucial role in chronic respi- ratory diseases. However, the translation of mathematical approaches for clinical value remains limited. This thesis aims to bridge the gap between mathematical techniques and clinical sciences to explore the potential of the pulmonary micro- biome for precision medicine. Results: Integrative-microbiomics (https://integrative- microbiomics.ntu.edu.sg), a novel approach integrating multiple microbiomes, en- hances patient stratification in bronchiectasis. Microbial association networks (in- teractome) and its network-based metrics outperform microbial abundance alone in associating with clinical outcomes, and identifies a dysregulated ‘gut-lung” axis in high-risk bronchiectasis. A novel application of Compositional Data Analysis (CoDA) to the pulmonary microbiome in COPD reveals time-dependent effects of antibiotics not captured by traditional microbiome analysis. Conclusion: This thesis highlights the essential role of innovative mathematical techniques in pul- monary microbiome analysis. It contributes to data-integration, network science, compositional data analysis, patient stratification, and clinical interventions for chronic respiratory diseases.en_US
dc.language.isoenen_US
dc.publisherNanyang Technological Universityen_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).en_US
dc.subjectMathematical Sciencesen_US
dc.subjectMedicine, Health and Life Sciencesen_US
dc.titleDebugging lung diseases: applying mathematical techniques for precision medicine on the pulmonary microbiome through modelling, data integration and machine learningen_US
dc.typeThesis-Doctor of Philosophyen_US
dc.contributor.supervisorSanjay Haresh Chotirmallen_US
dc.contributor.schoolLee Kong Chian School of Medicine (LKCMedicine)en_US
dc.description.degreeDoctor of Philosophyen_US
dc.contributor.supervisor2Krasimira Tsaneva-Atanasovaen_US
dc.identifier.doi10.32657/10356/173817-
dc.contributor.supervisoremailschotirmall@ntu.edu.sgen_US
dc.subject.keywordsMicrobiomeen_US
dc.subject.keywordsData integrationen_US
dc.subject.keywordsLung diseasesen_US
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsMetagenomicsen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:LKCMedicine Theses
Files in This Item:
File Description SizeFormat 
Thesis_Final.pdfFinal version of the thesis34.54 MBAdobe PDFThumbnail
View/Open

Page view(s)

154
Updated on Oct 5, 2024

Download(s) 50

58
Updated on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.