Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/173988
Title: Hybrid deep modelling with human knowledge in practical e-commerce search
Authors: Zeng, Anxiang
Keywords: Computer and Information Science
Issue Date: 2023
Publisher: Nanyang Technological University
Source: Zeng, A. (2023). Hybrid deep modelling with human knowledge in practical e-commerce search. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/173988
Abstract: In recent years, recommender systems have become increasingly important in the E-commerce marketplaces (e.g., Alibaba, Amazon). According to public information, recommender systems have contributed 30% gross merchandise value (GMV) for Amazon. Significant effort has been devoted into this research field by the industry and the academic community. Research works making key advances in recommendation systems can be divided into matrix factorization (MF), collaborative filtering (CF) and click-through rate (CTR) prediction. Currently, in industrial e-commerce recommendation systems, the main adopted approach is to use CF methods for performing recall tasks and deep learning-based CTR prediction methods for performing ranking tasks. However, significant challenges remain when these algorithms are to be deployed into practical e-commerce environments. In the system of search, most of the ctr modeling use big data, with a large number of user behavior data. The amount of data is a large number, which is very helpful to build the model. At the same time, these data also contains a lot of noise. This can lead to inaccurate modeling. In many cases, these behaviors are not consistent with business needs, we need to make manual guidance and intervention to the model.
URI: https://hdl.handle.net/10356/173988
DOI: 10.32657/10356/173988
Schools: School of Computer Science and Engineering 
Rights: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Theses

Files in This Item:
File Description SizeFormat 
Thesis_revised.pdf9.96 MBAdobe PDFThumbnail
View/Open

Page view(s)

131
Updated on Sep 14, 2024

Download(s) 50

81
Updated on Sep 14, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.