Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/173992
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Kyungduken_US
dc.contributor.authorBittner, Stefanen_US
dc.contributor.authorJin, Yuhaoen_US
dc.contributor.authorZeng, Yongquanen_US
dc.contributor.authorWang, Qi Jieen_US
dc.contributor.authorCao, Huien_US
dc.date.accessioned2024-03-11T01:08:29Z-
dc.date.available2024-03-11T01:08:29Z-
dc.date.issued2023-
dc.identifier.citationKim, K., Bittner, S., Jin, Y., Zeng, Y., Wang, Q. J. & Cao, H. (2023). Impact of cavity geometry on microlaser dynamics. Physical Review Letters, 131(15), 153801-. https://dx.doi.org/10.1103/PhysRevLett.131.153801en_US
dc.identifier.issn0031-9007en_US
dc.identifier.urihttps://hdl.handle.net/10356/173992-
dc.description.abstractWe experimentally investigate spatiotemporal lasing dynamics in semiconductor microcavities with various geometries, featuring integrable or chaotic ray dynamics. The classical ray dynamics directly impacts the lasing dynamics, which is primarily determined by the local directionality of long-lived ray trajectories. The directionality of optical propagation dictates the characteristic length scales of intensity variations, which play a pivotal role in nonlinear light-matter interactions. While wavelength-scale intensity variations tend to stabilize lasing dynamics, modulation on much longer scales causes spatial filamentation and irregular pulsation. Our results will pave the way to control the lasing dynamics by engineering the cavity geometry and ray dynamical properties.en_US
dc.description.sponsorshipNational Medical Research Council (NMRC)en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationNRF-CRP19-2017-01en_US
dc.relationMOH-000927en_US
dc.relation.ispartofPhysical Review Lettersen_US
dc.rights© 2023 American Physical Society. All rights reserved.en_US
dc.subjectEngineeringen_US
dc.titleImpact of cavity geometry on microlaser dynamicsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.researchCenter for OptoElectronics and Biophotonicsen_US
dc.contributor.researchThe Photonics Instituteen_US
dc.identifier.doi10.1103/PhysRevLett.131.153801-
dc.identifier.pmid37897774-
dc.identifier.scopus2-s2.0-85175277974-
dc.identifier.issue15en_US
dc.identifier.volume131en_US
dc.identifier.spage153801en_US
dc.subject.keywordsCavity geometryen_US
dc.subject.keywordsChaotic ray dynamicsen_US
dc.description.acknowledgementThe work done at Yale is supported partly by the National Science Foundation under Grant No. ECCS-1953959 and the Office of Naval Research under Grant No. N00014-221-1-2026. S. B. acknowledges funding for the Chair in Photonics by Ministère d’Enseignement Supérieur et de la Recherche (France); GDI Simulation; Région Grand-Est; Département Moselle; European Regional Development Fund (ERDF); CentraleSupélec; Fondation CentraleSupélec; and Metz Metropole. Q. J. Wang, Y. J., and Y. Z. acknowledge National Research Foundation Competitive Research Program (NRF-CRP19-2017-01) and National Medical Research Council (NMRC) MOH-000927.en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Sep 16, 2024

Page view(s)

55
Updated on Sep 18, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.