Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/173992
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Kyungduk | en_US |
dc.contributor.author | Bittner, Stefan | en_US |
dc.contributor.author | Jin, Yuhao | en_US |
dc.contributor.author | Zeng, Yongquan | en_US |
dc.contributor.author | Wang, Qi Jie | en_US |
dc.contributor.author | Cao, Hui | en_US |
dc.date.accessioned | 2024-03-11T01:08:29Z | - |
dc.date.available | 2024-03-11T01:08:29Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Kim, K., Bittner, S., Jin, Y., Zeng, Y., Wang, Q. J. & Cao, H. (2023). Impact of cavity geometry on microlaser dynamics. Physical Review Letters, 131(15), 153801-. https://dx.doi.org/10.1103/PhysRevLett.131.153801 | en_US |
dc.identifier.issn | 0031-9007 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/173992 | - |
dc.description.abstract | We experimentally investigate spatiotemporal lasing dynamics in semiconductor microcavities with various geometries, featuring integrable or chaotic ray dynamics. The classical ray dynamics directly impacts the lasing dynamics, which is primarily determined by the local directionality of long-lived ray trajectories. The directionality of optical propagation dictates the characteristic length scales of intensity variations, which play a pivotal role in nonlinear light-matter interactions. While wavelength-scale intensity variations tend to stabilize lasing dynamics, modulation on much longer scales causes spatial filamentation and irregular pulsation. Our results will pave the way to control the lasing dynamics by engineering the cavity geometry and ray dynamical properties. | en_US |
dc.description.sponsorship | National Medical Research Council (NMRC) | en_US |
dc.description.sponsorship | National Research Foundation (NRF) | en_US |
dc.language.iso | en | en_US |
dc.relation | NRF-CRP19-2017-01 | en_US |
dc.relation | MOH-000927 | en_US |
dc.relation.ispartof | Physical Review Letters | en_US |
dc.rights | © 2023 American Physical Society. All rights reserved. | en_US |
dc.subject | Engineering | en_US |
dc.title | Impact of cavity geometry on microlaser dynamics | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Electrical and Electronic Engineering | en_US |
dc.contributor.school | School of Physical and Mathematical Sciences | en_US |
dc.contributor.research | Center for OptoElectronics and Biophotonics | en_US |
dc.contributor.research | The Photonics Institute | en_US |
dc.identifier.doi | 10.1103/PhysRevLett.131.153801 | - |
dc.identifier.pmid | 37897774 | - |
dc.identifier.scopus | 2-s2.0-85175277974 | - |
dc.identifier.issue | 15 | en_US |
dc.identifier.volume | 131 | en_US |
dc.identifier.spage | 153801 | en_US |
dc.subject.keywords | Cavity geometry | en_US |
dc.subject.keywords | Chaotic ray dynamics | en_US |
dc.description.acknowledgement | The work done at Yale is supported partly by the National Science Foundation under Grant No. ECCS-1953959 and the Office of Naval Research under Grant No. N00014-221-1-2026. S. B. acknowledges funding for the Chair in Photonics by Ministère d’Enseignement Supérieur et de la Recherche (France); GDI Simulation; Région Grand-Est; Département Moselle; European Regional Development Fund (ERDF); CentraleSupélec; Fondation CentraleSupélec; and Metz Metropole. Q. J. Wang, Y. J., and Y. Z. acknowledge National Research Foundation Competitive Research Program (NRF-CRP19-2017-01) and National Medical Research Council (NMRC) MOH-000927. | en_US |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | EEE Journal Articles |
SCOPUSTM
Citations
50
1
Updated on Sep 16, 2024
Page view(s)
55
Updated on Sep 18, 2024
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.