Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/174003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCserző, Miklósen_US
dc.contributor.authorEisenhaber, Birgiten_US
dc.contributor.authorEisenhaber, Franken_US
dc.contributor.authorMagyar, Csabaen_US
dc.contributor.authorSimon, Istvánen_US
dc.date.accessioned2024-03-11T06:48:08Z-
dc.date.available2024-03-11T06:48:08Z-
dc.date.issued2023-
dc.identifier.citationCserző, M., Eisenhaber, B., Eisenhaber, F., Magyar, C. & Simon, I. (2023). The first quarter century of the dense alignment surface transmembrane prediction method. International Journal of Molecular Sciences, 24(18), 14016-. https://dx.doi.org/10.3390/ijms241814016en_US
dc.identifier.issn1661-6596en_US
dc.identifier.urihttps://hdl.handle.net/10356/174003-
dc.description.abstractThe dense alignment surface (DAS) transmembrane (TM) prediction method was first published more than 25 years ago. DAS was the one of the earliest tools to discriminate TM proteins from globular ones and to predict the sequence positions of TM helices in proteins with high accuracy from their amino acid sequence alone. The algorithmic improvements that followed in 2002 (DAS-TMfilter) made it one of the best performing tools among those relying on local sequence information for TM prediction. Since then, many more experimental data about membrane proteins (including thousands of 3D structures of membrane proteins) have accumulated but there has been no significant improvement concerning performance in the area of TM helix prediction tools. Here, we report a new implementation of the DAS-TMfilter prediction web server. We reevaluated the performance of the method using a five-times-larger, updated test dataset. We found that the method performs at essentially the same accuracy as the original even without any change to the parametrization of the program despite the much larger dataset. Thus, the approach captures the physico-chemistry of TM helices well, essentially solving this scientific problem.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Molecular Sciencesen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_US
dc.subjectMedicine, Health and Life Sciencesen_US
dc.titleThe first quarter century of the dense alignment surface transmembrane prediction methoden_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Biological Sciencesen_US
dc.contributor.organizationBioinformatics Institute, A*STARen_US
dc.contributor.organizationGenome Institute of Singapore, A*STARen_US
dc.identifier.doi10.3390/ijms241814016-
dc.description.versionPublished versionen_US
dc.identifier.pmid37762320-
dc.identifier.scopus2-s2.0-85172928896-
dc.identifier.issue18en_US
dc.identifier.volume24en_US
dc.identifier.spage14016en_US
dc.subject.keywordsTransmembrane proteinsen_US
dc.subject.keywordsTransmembrane predictionen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SBS Journal Articles
Files in This Item:
File Description SizeFormat 
ijms-24-14016.pdf1.12 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

1
Updated on Sep 15, 2024

Page view(s)

186
Updated on Sep 19, 2024

Download(s) 50

146
Updated on Sep 19, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.