Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/174325
Title: A shifty Toba magma reservoir: improved eruption chronology and petrochronological evidence for lateral growth of a giant magma body
Authors: Szymanowski, Dawid
Forni, Francesca
Phua, Marcus
Jicha, Brian
Lee, Daniel W. J.
Hsu, Ying-Jui
Rifai, Hamdi
Schoene, Blair
Bouvet de Maisonneuve, Caroline
Keywords: Earth and Environmental Sciences
Issue Date: 2023
Source: Szymanowski, D., Forni, F., Phua, M., Jicha, B., Lee, D. W. J., Hsu, Y., Rifai, H., Schoene, B. & Bouvet de Maisonneuve, C. (2023). A shifty Toba magma reservoir: improved eruption chronology and petrochronological evidence for lateral growth of a giant magma body. Earth and Planetary Science Letters, 622, 118408-. https://dx.doi.org/10.1016/j.epsl.2023.118408
Project: NRF-NRFF2016-04 
Journal: Earth and Planetary Science Letters 
Abstract: Polycyclic caldera complexes hold clues to understanding why some magmatic systems develop into supersized magma bodies and how they can recover to produce several caldera-forming eruptions. However, the geologic records of the transitions between successive caldera events are very often inaccessible due to limited preservation of eruptive products of inter-caldera activity, prompting the search for alternative archives of magma evolution such as accessory minerals. Here we applied multiple geochemical tools to study one of the most active caldera centres of the Quaternary, the Toba caldera complex in Sumatra (Indonesia), which produced at least four caldera-forming eruptions in the last 1.6 My, including the iconic Youngest Toba Tuff at 74 ka. We combined feldspar 40Ar/39Ar and zircon U–Pb geochronology of proximal pyroclastic deposits with glass and mineral chemistry of both the tuffs and distal marine tephra to revise the eruption chronology of Toba, obtaining new eruption ages of 1417 -31/+14 ka (zircon) or 1339 ± 39/39 ka (plagioclase, internal/full external 2σ uncertainty) for the Haranggaol Dacite Tuff, 783.81 ± 0.85/1.32 ka (sanidine) for Oldest Toba Tuff, and 503.61 ± 1.36/1.50 ka (sanidine) for Middle Toba Tuff. Isotope dilution thermal ionisation mass spectrometry (ID-TIMS) U–Pb crystallisation ages, trace element contents and Hf isotopic ratios of zircons illuminate changes in the shallow magma reservoir which saw near-continuous zircon crystallisation over 1.6 My. Prolonged build-ups to each eruption with highly scattered zircon trace element compositions reflect a complex, heterogeneous character of the shallow reservoir, without a clear temporal trend or indications of the eruption trigger. In contrast, hafnium isotopes in zircon display a pronounced shift towards unradiogenic values immediately after the OTT caldera collapse, followed by a gradual recovery to a baseline value of εHf = -7 at the time of YTT eruption, interpreted as a reflection of the shift in magma reservoir position corresponding to change in the character of assimilated crust. We can show in unprecedented detail how a large caldera collapse affects magma geochemistry; however, identification of patterns in the behaviour of the Toba system and making geochemistry-based predictions about its future development remain a challenge.
URI: https://hdl.handle.net/10356/174325
ISSN: 0012-821X
DOI: 10.1016/j.epsl.2023.118408
Schools: Asian School of the Environment 
Research Centres: Earth Observatory of Singapore 
Rights: © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:ASE Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0012821X23004211-main.pdf1.96 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

7
Updated on Mar 16, 2025

Page view(s)

87
Updated on Mar 16, 2025

Download(s) 50

31
Updated on Mar 16, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.