Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/175411
Title: Data augmentation for computer vision problems
Authors: Wu, Rongxi
Keywords: Computer and Information Science
Issue Date: 2023
Publisher: Nanyang Technological University
Source: Wu, R. (2023). Data augmentation for computer vision problems. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/175411
Project: SCSE22-0971 
Abstract: Computer Vision is a vital sub-field of artificial intelligence, it consists of several sub-topics such as image classification, image segmentation, object detection[1], etc. Computer vision presents a myriad of challenges that must be overcome through dedicated research and innovation. Like every research topic, it demands rigorous exploration to tackle these obstacles. In the era where data is gold, the insufficient volume of data during training would result in over-fitting, a phenomenon where a model performs exceptionally well on the training data but fails to generalize effectively to unseen data points during validation or testing. Traditionally, the size of the data set can be manually increased through the collection of new data such as by taking more pictures. However, that will require ample cost and effort. To elevate this problem, data augmentation is being employed, it involves applying transformations to existing data to generate additional examples while preserving their labels [2]. To date, many traditional data augmentation techniques are already being widely used and explored, and there is an emergence of new data augmentation techniques, that involve the generation of synthetic data points. Hence, this paper will particularly evaluate the effectiveness of training better models by using these new data augmentation techniques and the conventional transformation data augmentation techniques during data preparation, there is also an aim to address the limitations by making changes to improve the situation
URI: https://hdl.handle.net/10356/175411
Schools: School of Computer Science and Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_Final_Report.pdf
  Restricted Access
1.36 MBAdobe PDFView/Open

Page view(s)

115
Updated on May 7, 2025

Download(s)

7
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.