Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/175642
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoegeng, Hans Farrellen_US
dc.date.accessioned2024-05-02T04:38:18Z-
dc.date.available2024-05-02T04:38:18Z-
dc.date.issued2024-
dc.identifier.citationSoegeng, H. F. (2024). TrueGPT: can you privately extract algorithms from ChatGPT in tabular classification?. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/175642en_US
dc.identifier.urihttps://hdl.handle.net/10356/175642-
dc.description.abstractRecently, it has been shown that Large Language Models (LLMs) achieve impressive zero-shot classification on tabular data, revealing an internal algorithm ALLM without explicit training data. We predict that ALLM will become a standard for tabular data classification, replacing resource-intensive custom ML models. However, LLM complexity hinders regulatory transparency. To address this, we introduce a method to approximate ALLM with human-interpretable binary feature rules Aerule. We utilize the TT-rules (Truth Table rules) model developed by Benamira et al., 2023 to extract the binary rules through the LLM inference of tabular datasets. Following the extraction and approximation processes, we set aside the LLM and exclusively rely on Aerule for inference. Our method is fully automatic. We validate the approach on 8 public tabular datasets, adding a user option to activate privacy-preserving feature to ensure owner data protection.en_US
dc.language.isoenen_US
dc.publisherNanyang Technological Universityen_US
dc.subjectComputer and Information Scienceen_US
dc.subjectMathematical Sciencesen_US
dc.titleTrueGPT: can you privately extract algorithms from ChatGPT in tabular classification?en_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorThomas Peyrinen_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.description.degreeBachelor's degreeen_US
dc.contributor.supervisor2Adrien Benamiraen_US
dc.contributor.supervisoremailthomas.peyrin@ntu.edu.sg, adrien.benamira@ntu.edu.sgen_US
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsExplainable AIen_US
dc.subject.keywordsLarge language modelsen_US
item.grantfulltextembargo_restricted_20260131-
item.fulltextWith Fulltext-
Appears in Collections:SPMS Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
FYP__Copy_.pdf
  Until 2026-01-31
602.97 kBAdobe PDFUnder embargo until Jan 31, 2026

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.