Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLim, Yu Fongen_US
dc.identifier.citationLim, Y. F. (2024). 3D printing of asymmetric re-entrant structures for microfluidics. Final Year Project (FYP), Nanyang Technological University, Singapore.
dc.description.abstractTraditional microfluidic fabrication methods are often limited by complexity and cost. In contrast, 3D printing offers rapid prototyping and intricate geometries, especially beneficial for asymmetric re-entrant structures. Techniques like stereolithography (SLA), digital light processing (DLP), and selective laser sintering (SLS) enable high-resolution printing of complex features crucial for efficient fluid control. Applications span from lab-on-a-chip diagnostics to organ-on-a-chip platforms and microscale reactors. Customized microfluidic devices with tailored functionalities are empowering advancements in biomedical engineering, offering solutions for complex fluidic challenges at the microscale. Despite significant advancements, the majority of natural and artificial structures struggle to enhance the Laplace pressure difference or capillary force, resulting in a low unidirectional capillary height (< 30 mm). In this study, asymmetric re-entrant structures featuring long horizontal overhangs and interconnected forward/lateral microchannels were fabricated using three-dimensional (3D) printing. This led to substantially increased unidirectional capillary heights of 102.3 mm and 44.6 mm for water and ethanol, respectively, nearing the theoretical limits. Building upon both asymmetric and symmetric re-entrant structures, we introduce the concept of liquid transistors to programmatically adjust capillary rise. These liquid transistors hold promise for developing functional microfluidic devices capable of high-efficiency liquid-patterning, desalination, and biochemical microreactions in 3D space.en_US
dc.publisherNanyang Technological Universityen_US
dc.title3D printing of asymmetric re-entrant structures for microfluidicsen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorZhou Kunen_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeBachelor's degreeen_US
item.fulltextWith Fulltext-
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
  Restricted Access
2.51 MBAdobe PDFView/Open

Page view(s)

Updated on Jul 20, 2024


Updated on Jul 20, 2024

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.