Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/1783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChng, Loi Siang.en_US
dc.date.accessioned2008-09-10T08:36:13Z-
dc.date.available2008-09-10T08:36:13Z-
dc.date.copyright2003en_US
dc.date.issued2003-
dc.identifier.urihttp://hdl.handle.net/10356/1783-
dc.description.abstractThe study uses Kohonen Self-Organizing Map, k-means clustering and two-step clustering to cluster companies in Singapore based on the companies' financial results.en_US
dc.rightsNanyang Technological Universityen_US
dc.subjectDRNTU::Library and information science::General-
dc.subjectDRNTU::Library and information science::Libraries::Automation-
dc.titleUsing data mining techniques to cluster Singapore companies.en_US
dc.typeThesisen_US
dc.contributor.supervisorKhoo, Christopher Soo Guanen_US
dc.contributor.schoolWee Kim Wee School of Communication and Informationen_US
dc.description.degreeMaster of Science (Information Studies)en_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:WKWSCI Theses
Files in This Item:
File Description SizeFormat 
WKWSCI_THESES_422.pdf
  Restricted Access
1.61 MBAdobe PDFView/Open

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.