Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/178459
Title: | Towards explainable in-the-wild video quality assessment: a database and a language-prompted approach | Authors: | Wu, Haoning Zhang, Erli Liao, Liang Chen, Chaofeng Hou, Jingwen Wang, Annan Sun, Wenxiu Yan, Qiong Lin, Weisi |
Keywords: | Computer and Information Science | Issue Date: | 2023 | Source: | Wu, H., Zhang, E., Liao, L., Chen, C., Hou, J., Wang, A., Sun, W., Yan, Q. & Lin, W. (2023). Towards explainable in-the-wild video quality assessment: a database and a language-prompted approach. 31st ACM International Conference on Multimedia (MM '23), 1045-1054. https://dx.doi.org/10.1145/3581783.3611737 | Conference: | 31st ACM International Conference on Multimedia (MM '23) | Abstract: | The proliferation of in-the-wild videos has greatly expanded the Video Quality Assessment (VQA) problem. Unlike early definitions that usually focus on limited distortion types, VQA on in-the-wild videos is especially challenging as it could be affected by complicated factors, including various distortions and diverse contents. Though subjective studies have collected overall quality scores for these videos, how the abstract quality scores relate with specific factors is still obscure, hindering VQA methods from more concrete quality evaluations (e.g. sharpness of a video). To solve this problem, we collect over two million opinions on 4,543 in-the-wild videos on 13 dimensions of quality-related factors, including in-capture authentic distortions (e.g. motion blur, noise, flicker), errors introduced by compression and transmission, and higher-level experiences on semantic contents and aesthetic issues (e.g. composition, camera trajectory), to establish the multi-dimensional Maxwell database. Specifically, we ask the subjects to label among a positive, a negative, and a neutral choice for each dimension. These explanation-level opinions allow us to measure the relationships between specific quality factors and abstract subjective quality ratings, and to benchmark different categories of VQA algorithms on each dimension, so as to more comprehensively analyze their strengths and weaknesses. Furthermore, we propose the MaxVQA, a language-prompted VQA approach that modifies vision-language foundation model CLIP to better capture important quality issues as observed in our analyses. The MaxVQA can jointly evaluate various specific quality factors and final quality scores with state-of-the-art accuracy on all dimensions, and superb generalization ability on existing datasets. Code and data available at https://github.com/VQAssessment/MaxVQA. | URI: | https://hdl.handle.net/10356/178459 | URL: | http://arxiv.org/abs/2305.12726v2 | ISBN: | [9798400701085] | DOI: | 10.1145/3581783.3611737 | DOI (Related Dataset): | 10.21979/N9/ELWDPE | Schools: | College of Computing and Data Science School of Computer Science and Engineering |
Research Centres: | S-Lab | Rights: | © 2023 Copyright held by the owner/author(s). This work is licensed under a Creative Commons Attribution International 4.0 License. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | CCDS Conference Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
3581783.3611737.pdf | 3.72 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
50
5
Updated on Sep 8, 2024
Page view(s)
62
Updated on Sep 8, 2024
Download(s)
17
Updated on Sep 8, 2024
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.