Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/178883
Title: | Revealing the spatiotemporal brain dynamics of covert speech compared with overt speech: a simultaneous EEG-fMRI study | Authors: | Zhang, Wei Jiang, Muyun Teo, Colin Kok Ann Bhuvanakantham, Raghavan Fong, Lai Guan Sim, Jeremy Wei Khang Guo, Zhiwei Foo, Vince Chuan Huat Chua, Jonathan Rong Hui Padmanabhan, Parasuraman Leong, Victoria Lu, Jia Gulyás, Balázs Guan, Cuntai |
Keywords: | Medicine, Health and Life Sciences | Issue Date: | 2024 | Source: | Zhang, W., Jiang, M., Teo, C. K. A., Bhuvanakantham, R., Fong, L. G., Sim, J. W. K., Guo, Z., Foo, V. C. H., Chua, J. R. H., Padmanabhan, P., Leong, V., Lu, J., Gulyás, B. & Guan, C. (2024). Revealing the spatiotemporal brain dynamics of covert speech compared with overt speech: a simultaneous EEG-fMRI study. NeuroImage, 293, 120629-. https://dx.doi.org/10.1016/j.neuroimage.2024.120629 | Project: | H22P0M0002 D821/CoNiC ARISE/2017/16 DSOCL21193 |
Journal: | NeuroImage | Abstract: | Covert speech (CS) refers to speaking internally to oneself without producing any sound or movement. CS is involved in multiple cognitive functions and disorders. Reconstructing CS content by brain-computer interface (BCI) is also an emerging technique. However, it is still controversial whether CS is a truncated neural process of overt speech (OS) or involves independent patterns. Here, we performed a word-speaking experiment with simultaneous EEG-fMRI. It involved 32 participants, who generated words both overtly and covertly. By integrating spatial constraints from fMRI into EEG source localization, we precisely estimated the spatiotemporal dynamics of neural activity. During CS, EEG source activity was localized in three regions: the left precentral gyrus, the left supplementary motor area, and the left putamen. Although OS involved more brain regions with stronger activations, CS was characterized by an earlier event-locked activation in the left putamen (peak at 262 ms versus 1170 ms). The left putamen was also identified as the only hub node within the functional connectivity (FC) networks of both OS and CS, while showing weaker FC strength towards speech-related regions in the dominant hemisphere during CS. Path analysis revealed significant multivariate associations, indicating an indirect association between the earlier activation in the left putamen and CS, which was mediated by reduced FC towards speech-related regions. These findings revealed the specific spatiotemporal dynamics of CS, offering insights into CS mechanisms that are potentially relevant for future treatment of self-regulation deficits, speech disorders, and development of BCI speech applications. | URI: | https://hdl.handle.net/10356/178883 | ISSN: | 1053-8119 | DOI: | 10.1016/j.neuroimage.2024.120629 | Schools: | School of Computer Science and Engineering Lee Kong Chian School of Medicine (LKCMedicine) Interdisciplinary Graduate School (IGS) School of Social Sciences |
Organisations: | National University Health System DSO National Laboratories, Singapore Yong Loo Lin School of Medicine, NUS |
Research Centres: | Cognitive Neuroimaging Centre | Rights: | © 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S1053811924001241.pdf | 6.08 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
1
Updated on May 4, 2025
Page view(s)
140
Updated on May 7, 2025
Download(s) 50
61
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.