Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/179227
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhong, Yuxingen_US
dc.contributor.authorYang, Nachuanen_US
dc.contributor.authorHuang, Lingyingen_US
dc.contributor.authorShi, Guodongen_US
dc.contributor.authorShi, Lingen_US
dc.date.accessioned2024-07-23T04:46:29Z-
dc.date.available2024-07-23T04:46:29Z-
dc.date.issued2024-
dc.identifier.citationZhong, Y., Yang, N., Huang, L., Shi, G. & Shi, L. (2024). Sparse sensor selection for distributed systems: an l1-relaxation approach. Automatica, 165, 111670-. https://dx.doi.org/10.1016/j.automatica.2024.111670en_US
dc.identifier.issn0005-1098en_US
dc.identifier.urihttps://hdl.handle.net/10356/179227-
dc.description.abstractWe study the problem of sensor selection for distributed systems, where a large number of sensors are located spatially in many different locations. Specifically, we consider both perfect and packet-dropping communication channels. While the original problem is NP-hard, by adopting a sparse design, we can solve the problem via convex optimization and reduce the computation cost significantly. Our method not only handles correlated measurement noise but also can be easily extended to actuator selection or sensor-and-actuator (SaA) selection problems. Simulation shows that our sparsity-based approach performs similarly to the brute force optimal strategy while consuming significantly less computation time. Additionally, our method is shown to outperform the state-of-art method notably.en_US
dc.language.isoenen_US
dc.relation.ispartofAutomaticaen_US
dc.rights© 2024 Elsevier Ltd. All rights reserved.en_US
dc.subjectEngineeringen_US
dc.titleSparse sensor selection for distributed systems: an l1-relaxation approachen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1016/j.automatica.2024.111670-
dc.identifier.scopus2-s2.0-85192179172-
dc.identifier.volume165en_US
dc.identifier.spage111670en_US
dc.subject.keywordsSensor selectionen_US
dc.subject.keywordsSparsityen_US
dc.description.acknowledgementThe work by Y. Zhong, N. Yang and L. Shi is supported by the Hong Kong RGC General Research Fund 16211622.en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

Page view(s)

27
Updated on Sep 15, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.