Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/179265
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Shengyaoen_US
dc.contributor.authorBhatti, Sabpreeten_US
dc.contributor.authorTeo, Siew Langen_US
dc.contributor.authorLin, Mingen_US
dc.contributor.authorPan, Xinyueen_US
dc.contributor.authorYang, Zheruien_US
dc.contributor.authorSong, Pengen_US
dc.contributor.authorTian, Wanghaoen_US
dc.contributor.authorHe, Xinyuen_US
dc.contributor.authorChai, Jianweien_US
dc.contributor.authorLoh, Xian Junen_US
dc.contributor.authorZhu, Qiangen_US
dc.contributor.authorPiramanayagam, S. N.en_US
dc.contributor.authorWang, Renshaw Xiaoen_US
dc.date.accessioned2024-07-24T01:08:09Z-
dc.date.available2024-07-24T01:08:09Z-
dc.date.issued2024-
dc.identifier.citationLi, S., Bhatti, S., Teo, S. L., Lin, M., Pan, X., Yang, Z., Song, P., Tian, W., He, X., Chai, J., Loh, X. J., Zhu, Q., Piramanayagam, S. N. & Wang, R. X. (2024). Electrical control grain dimensionality with multilevel magnetic anisotropy. ACS Nano, 18(22), 14339-14347. https://dx.doi.org/10.1021/acsnano.4c00422en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttps://hdl.handle.net/10356/179265-
dc.description.abstractIn alignment with the increasing demand for larger storage capacity and longer data retention, the electrical control of magnetic anisotropy has been a research focus in the realm of spintronics. Typically, magnetic anisotropy is determined by grain dimensionality, which is set during the fabrication of magnetic thin films. Despite the intrinsic correlation between magnetic anisotropy and grain dimensionality, there is a lack of experimental evidence for electrically controlling grain dimensionality, thereby impairing the efficiency of magnetic anisotropy modulation. Here, we demonstrate an electric field control of grain dimensionality and prove it as the active mechanism for tuning interfacial magnetism. The reduction in grain dimensionality is associated with a transition from ferromagnetic to superparamagnetic behavior. We achieve a nonvolatile and reversible modulation of the coercivity in both the ferromagnetic and superparamagnetic regimes. Subsequent electrical and elemental analysis confirms the variation in grain dimensionality upon the application of gate voltages, revealing a transition from a multidomain to a single-domain state, accompanied by a reduction in grain dimensionality. Furthermore, we exploit the influence of grain dimensionality on domain wall motion, extending its applicability to multilevel magnetic memory and synaptic devices. Our results provide a strategy for tuning interfacial magnetism through grain size engineering for advancements in high-performance spintronics.en_US
dc.description.sponsorshipAgency for Science, Technology and Research (A*STAR)en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationNRF-CRP21-2018-0003en_US
dc.relationMOET2EP50122-0023en_US
dc.relationRG82/23en_US
dc.relationMOE-T2EP50120-0006en_US
dc.relationMOE-T2EP50220-0005en_US
dc.relationMOE2018-T3-1-002en_US
dc.relationA20E5c0094en_US
dc.relation.ispartofACS Nanoen_US
dc.rights© 2024 American Chemical Society. All rights reserved.en_US
dc.subjectPhysicsen_US
dc.titleElectrical control grain dimensionality with multilevel magnetic anisotropyen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolSchool of Chemistry, Chemical Engineering and Biotechnologyen_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.organizationInstitute of Materials Research and Engineering, A*STARen_US
dc.contributor.organizationInstitute of Sustainability for Chemicals, Energy and Environment, A*STARen_US
dc.identifier.doi10.1021/acsnano.4c00422-
dc.identifier.pmid38781247-
dc.identifier.scopus2-s2.0-85194288771-
dc.identifier.issue22en_US
dc.identifier.volume18en_US
dc.identifier.spage14339en_US
dc.identifier.epage14347en_US
dc.subject.keywordsDomain wall motionen_US
dc.subject.keywordsElectrochemical gatingen_US
dc.description.acknowledgementThe authors acknowledge the National Research Foundation (NRF) Singapore funding for the CRP21 grant NRF-CRP21-2018-0003. S.L. acknowledges CRP for the research scholarship. S.B. and S.N.P. acknowledge the financial support by the Ministry of Education, Singapore, under its Tier 2 grant MOET2EP50122-0023. X.R.W. acknowledges support from Singapore Ministry of Education under its Academic Research Fund (AcRF) Tier 1 (grant no. RG82/23), Tier 2 (grant nos.MOE-T2EP50120-0006 and MOE-T2EP50220-0005), and Tier 3 (grant no. MOE2018-T3-1-002) and the Agency for Science, Technology and Research (A*STAR) under its AMEIRG grant (Project No. A20E5c0094).en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:EEE Journal Articles

Page view(s)

34
Updated on Sep 8, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.