Please use this identifier to cite or link to this item:
Title: Performance studies of wireless communication systems with selection diversity
Authors: Zhu, Yunfeng.
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems
Issue Date: 2009
Abstract: This report assesses the performance of selection diversity receiver in a slow, frequency-flat-fading channel in the presence of additive white Gaussian noise (AWGN). The signals are binary phase-shift keying (BPSK) or binary frequency-shift keying (BFSK) modulated. The fading channels include Rayleigh, Rician, and Nakagami-m fading channels. Simulations are done for the case where the fading variables for each channel are independent of each other. In that case, the analysis of the wireless system is fairly straightforward and theoretical expressions for the signal to noise ratio (SNR) and bit-error rate (BER) can be easily derived, which enables comparisons with simulated fading. In this project, equal-gain combining (EGC) and maximum-ratio combining (MRC) are also studied, and the simulation results are used to compare with selection diversity combining (SDC). Some conclusions can be drawn from this project. Signals have better performance when using BPSK modulation than using BFSK modulation. Rayleigh fading channel has the most fading effect compared with Rician and Nakagami-m fading channel. When diversity combining techniques are employed at the receiver, MRC is found to have the best performance, followed by EGC and SDC. It is also found that SDC and EGC have simpler receiver structure compared with MRC. SDC can be applied in both coherent and non-coherent detection.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Report Final_Zhu Yunfeng.pdf
  Restricted Access
2.84 MBAdobe PDFView/Open

Page view(s) 10

Updated on Nov 25, 2020

Download(s) 10

Updated on Nov 25, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.