Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/179921
Full metadata record
DC FieldValueLanguage
dc.contributor.authorR, Vishnupriyaen_US
dc.contributor.authorRobinson, Neethuen_US
dc.contributor.authorM, Ramasubba Reddyen_US
dc.date.accessioned2024-09-03T01:32:49Z-
dc.date.available2024-09-03T01:32:49Z-
dc.date.issued2024-
dc.identifier.citationR, V., Robinson, N. & M, R. R. (2024). Genetic algorithm based deep learning model adaptation for improvising the motor imagery classification. Brain-Computer Interfaces, 1-12. https://dx.doi.org/10.1080/2326263X.2024.2347790en_US
dc.identifier.issn2326-263Xen_US
dc.identifier.urihttps://hdl.handle.net/10356/179921-
dc.description.abstractDeep learning methods have proved a promising performance for electroencephalography-based brain-computer interfaces (EEG-BCI). It is particularly encouraging that a subject-independent model can be trained using a large amount of other subjects’ data. Transfer learning methods such as adaptation or fine-tuning can be used on the pre-trained model to improve the performance. This study examined the influence of fine-tuning on the subject-independent model for EEG-based motor imagery (MI) classification using a genetic algorithm (GA). The proposed method is evaluated on the binary class MI dataset from the Korea University EEG dataset. Results show that the proposed GA-based fine-tuning approach statistically improved the average classification accuracy of the baseline model from 84.46% to 87.29%. More interestingly, our approach shows significant improvement in cases where the performance of the baseline model is poor after fine-tuning using other approaches. Further, layer-wise relevance propagation (LRP) is used to analyze the adapted models to gain a deeper understanding of the neurophysiological explanations underlying the model’s decision.en_US
dc.language.isoenen_US
dc.relation.ispartofBrain-Computer Interfacesen_US
dc.rights© 2024 Informa UK Limited, trading as Taylor & Francis Group. All rights reserved.en_US
dc.subjectComputer and Information Scienceen_US
dc.titleGenetic algorithm based deep learning model adaptation for improvising the motor imagery classificationen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.identifier.doi10.1080/2326263X.2024.2347790-
dc.identifier.scopus2-s2.0-85192143238-
dc.identifier.spage1en_US
dc.identifier.epage12en_US
dc.subject.keywordsBrain-computer interfaceen_US
dc.subject.keywordsElectroencephalographyen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Apr 24, 2025

Page view(s)

77
Updated on Apr 27, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.