Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/180031
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Song, Yutong | en_US |
dc.contributor.author | Zhao, Zhihao | en_US |
dc.contributor.author | Xu, Linyu | en_US |
dc.contributor.author | Huang, Peiyuan | en_US |
dc.contributor.author | Gao, Jiayang | en_US |
dc.contributor.author | Li, Jingxuan | en_US |
dc.contributor.author | Wang, Xuejie | en_US |
dc.contributor.author | Zhou, Yiren | en_US |
dc.contributor.author | Wang, Jinhui | en_US |
dc.contributor.author | Zhao, Wenting | en_US |
dc.contributor.author | Wang, Likun | en_US |
dc.contributor.author | Zheng, Chaogu | en_US |
dc.contributor.author | Gao, Bo | en_US |
dc.contributor.author | Jiang, Liwen | en_US |
dc.contributor.author | Liu, Kai | en_US |
dc.contributor.author | Guo, Yusong | en_US |
dc.contributor.author | Yao, Xiaoqiang | en_US |
dc.contributor.author | Duan, Liting | en_US |
dc.date.accessioned | 2024-09-10T05:30:22Z | - |
dc.date.available | 2024-09-10T05:30:22Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Song, Y., Zhao, Z., Xu, L., Huang, P., Gao, J., Li, J., Wang, X., Zhou, Y., Wang, J., Zhao, W., Wang, L., Zheng, C., Gao, B., Jiang, L., Liu, K., Guo, Y., Yao, X. & Duan, L. (2024). Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum. Developmental Cell, 59(11), 1396-1409.e5. https://dx.doi.org/10.1016/j.devcel.2024.03.014 | en_US |
dc.identifier.issn | 1534-5807 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/180031 | - |
dc.description.abstract | The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Developmental Cell | en_US |
dc.rights | © 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | en_US |
dc.subject | Medicine, Health and Life Sciences | en_US |
dc.title | Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Chemical and Biomedical Engineering | en_US |
dc.identifier.doi | 10.1016/j.devcel.2024.03.014 | - |
dc.description.version | Published version | en_US |
dc.identifier.pmid | 38569547 | - |
dc.identifier.scopus | 2-s2.0-85194251979 | - |
dc.identifier.issue | 11 | en_US |
dc.identifier.volume | 59 | en_US |
dc.identifier.spage | 1396 | en_US |
dc.identifier.epage | 1409.e5 | en_US |
dc.subject.keywords | ER mechanostimulator | en_US |
dc.subject.keywords | Optical dimerizer | en_US |
dc.description.acknowledgement | This work was supported by National Natural Science Foundation of China (NSFC)-Young Scientists Fund (32201208 to L.D.), Young Collaborative Research Grant (YCRG) from the Research Grants Council (RGC) in Hong Kong (C4001-22Y to L.D.), National Natural Science Foundation of China/RGC Joint Research Scheme from RGC in Hong Kong (N_CUHK489/22 to L.D.), Guangdong Basic and Applied Basic Research Foundation (2023A1515011865 to L.D.), Collaborative Research Grant from RGC in Hong Kong (C6034-21G to K.L.), Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology (20200730009 to K.L.), Innovation and Technology Commission (ITCPD/17-9 to K.L.), Research Impact Fund from RGC in Hong Kong (R4005-18F to X.Y.), Hong Kong Innovation and Technology Fund (ITS/212/21 to X.Y.), and a Direct Grant from the Chinese University of Hong Kong (4055172). | en_US |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
Appears in Collections: | SCBE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S1534580724001801-main.pdf | 7.83 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
50
7
Updated on Mar 16, 2025
Page view(s)
85
Updated on Mar 24, 2025
Download(s)
9
Updated on Mar 24, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.