Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/180054
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Selvarajoo, Kumar | en_US |
dc.contributor.author | Maurer-Stroh, Sebastian | en_US |
dc.date.accessioned | 2024-09-11T04:46:16Z | - |
dc.date.available | 2024-09-11T04:46:16Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Selvarajoo, K. & Maurer-Stroh, S. (2024). Towards multi-omics synthetic data integration. Briefings in Bioinformatics, 25(3). https://dx.doi.org/10.1093/bib/bbae213 | en_US |
dc.identifier.issn | 1467-5463 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/180054 | - |
dc.description.abstract | Across many scientific disciplines, the development of computational models and algorithms for generating artificial or synthetic data is gaining momentum. In biology, there is a great opportunity to explore this further as more and more big data at multi-omics level are generated recently. In this opinion, we discuss the latest trends in biological applications based on process-driven and data-driven aspects. Moving ahead, we believe these methodologies can help shape novel multi-omics-scale cellular inferences. | en_US |
dc.description.sponsorship | Agency for Science, Technology and Research (A*STAR) | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Briefings in Bioinformatics | en_US |
dc.rights | © The Author(s) 2024. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. | en_US |
dc.subject | Medicine, Health and Life Sciences | en_US |
dc.title | Towards multi-omics synthetic data integration | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Biological Sciences | en_US |
dc.contributor.organization | Bioinformatics Institute, A*STAR | en_US |
dc.contributor.organization | Yong Loo Lin School of Medicine, NUS | en_US |
dc.contributor.organization | Synthetic Biology for Clinical and Technological Innovation, NUS | en_US |
dc.identifier.doi | 10.1093/bib/bbae213 | - |
dc.description.version | Published version | en_US |
dc.identifier.pmid | 38711370 | - |
dc.identifier.scopus | 2-s2.0-85192586359 | - |
dc.identifier.issue | 3 | en_US |
dc.identifier.volume | 25 | en_US |
dc.subject.keywords | Synthetic data | en_US |
dc.subject.keywords | Multi-omics | en_US |
dc.description.acknowledgement | The authors thank the Bioinformatics Institute, A∗STAR, for funding and support. | en_US |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | SBS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
bbae213.pdf | 615.89 kB | Adobe PDF | View/Open |
Page view(s)
35
Updated on Dec 10, 2024
Download(s)
7
Updated on Dec 10, 2024
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.