Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/180331
Title: Mechanical and thermal properties of in situ AlN/Al-12Si composite fabricated by laser powder bed fusion
Authors: Xiong, Xin-Xing
Liang, Zi-Xi
Wang, Pei
Qi, Yang
Chen, Zhang-Wei
Liu, Zhi-Yuan
Wang, Xu-Lei
Shen, Qing-Liang
Kang, Nan
Zhang, Lai-Chang
Keywords: Engineering
Issue Date: 2024
Source: Xiong, X., Liang, Z., Wang, P., Qi, Y., Chen, Z., Liu, Z., Wang, X., Shen, Q., Kang, N. & Zhang, L. (2024). Mechanical and thermal properties of in situ AlN/Al-12Si composite fabricated by laser powder bed fusion. Materials Characterization, 210, 113825-. https://dx.doi.org/10.1016/j.matchar.2024.113825
Journal: Materials Characterization
Abstract: This work reports on the synthesis, mechanical, and thermal properties of in situ AlN/Al-12Si composite through laser powder bed fusion (LPBF) by blending Al-12Si powder with 5 vol% nano-sized BN particles. Incorporating nano-BN particles results in (i) formation of thermally stable AlN phase, preventing Si diffusion and breakdown of cellular structure, (ii) improvement of compressive yield strength (CYS), and (iii) reduction in coefficients of thermal expansion (CTE) and thermal conductivity. In addition, compared to Al-12Si alloy, the composite exhibits grain refinement from 38.8 to 1.2 μm in size, and the alteration of columnar grains (Al-12Si) to equiaxed grains (AlN/Al-12Si). At annealing temperatures above 573 K, the CYS of the unadulterated Al-12Si alloy had a ∼ 2.1 times greater reduction (from 285 to 200 MPa) compared to that of the composites (from 301 to 260 MPa). The formation of the AlN phase mitigates the significant reduction in CYS. The CTE of Al-12Si and AlN/Al-12Si are 27.3 × 10−6 K−1 and 24.3 × 10−6 K−1 respectively. There is good agreement between the measured CYS results and the calculated strengthening mechanisms. This work offers both theoretical insights and experimental data to support the use of LPBF AlN/Al-12Si composite in low- and moderate-temperature applications.
URI: https://hdl.handle.net/10356/180331
ISSN: 1044-5803
DOI: 10.1016/j.matchar.2024.113825
Schools: School of Mechanical and Aerospace Engineering 
Research Centres: Singapore Centre for 3D Printing 
Rights: © 2024 Elsevier Inc. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

SCOPUSTM   
Citations 50

5
Updated on Mar 17, 2025

Page view(s)

53
Updated on Mar 22, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.