Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/180343
Title: Fast multi-view clustering via correntropy-based orthogonal concept factorization
Authors: Wu, Jinghan
Yang, Ben
Xue, Zhiyuan
Zhang, Xuetao
Lin, Zhiping
Chen, Badong
Keywords: Engineering
Issue Date: 2024
Source: Wu, J., Yang, B., Xue, Z., Zhang, X., Lin, Z. & Chen, B. (2024). Fast multi-view clustering via correntropy-based orthogonal concept factorization. Neural Networks, 173, 106170-. https://dx.doi.org/10.1016/j.neunet.2024.106170
Journal: Neural Networks 
Abstract: Owing to its ability to handle negative data and promising clustering performance, concept factorization (CF), an improved version of non-negative matrix factorization, has been incorporated into multi-view clustering recently. Nevertheless, existing CF-based multi-view clustering methods still have the following issues: (1) they directly conduct factorization in the original data space, which means its efficiency is sensitive to the feature dimension; (2) they ignore the high degree of factorization freedom of standard CF, which may lead to non-uniqueness factorization thereby causing reduced effectiveness; (3) traditional robust norms they used are unable to handle complex noises, significantly challenging their robustness. To address these issues, we establish a fast multi-view clustering via correntropy-based orthogonal concept factorization (FMVCCF). Specifically, FMVCCF executes factorization on a learned consensus anchor graph rather than directly decomposing the original data, lessening the dimensionality sensitivity. Then, a lightweight graph regularization term is incorporated to refine the factorization process with a low computational burden. Moreover, an improved multi-view correntropy-based orthogonal CF model is developed, which can enhance the effectiveness and robustness under the orthogonal constraint and correntropy criterion, respectively. Extensive experiments demonstrate that FMVCCF can achieve promising effectiveness and robustness on various real-world datasets with high efficiency.
URI: https://hdl.handle.net/10356/180343
ISSN: 0893-6080
DOI: 10.1016/j.neunet.2024.106170
Schools: School of Electrical and Electronic Engineering 
Rights: © 2024 Elsevier Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

SCOPUSTM   
Citations 50

4
Updated on Mar 20, 2025

Page view(s)

43
Updated on Mar 20, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.