Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/18042
Title: Performance of pulsed plasma thrusters
Authors: Loh, Kelvin Kwong Lam.
Keywords: DRNTU::Engineering::Aeronautical engineering::Jet propulsion
DRNTU::Engineering::Mechanical engineering::Fluid mechanics
DRNTU::Engineering::Mechanical engineering::Motors, engines and turbines
DRNTU::Science::Physics::Electricity and magnetism
Issue Date: 2009
Abstract: A pulsed plasma thruster (PPT) is a type of electromagnetic propulsion system which uses plasma as the working fluid to electromagnetically accelerate the fluid to high exhaust velocities. The PPT is primarily designed for long duration satellite missions for attitude control as well as interplanetary and deep space missions. The auto-initiated PPT is one variant of the PPTs developed. This work is a numerical work on the performance of an auto-initiated pulsed plasma thruster. The goal is to compare with the experimental results obtained from the work done at the Indian Institute of Technology, Kanpur. The plasma acceleration phase is modeled by a simple 1-D analytical model, as well as a set of integro-differential equations from the slug, and snowplow model. The different modes of EM acceleration for plasma (steady, and unsteady) is also explored. The case study of Hartmann flows that is investigated is a case for steady plasma acceleration flows. The results provide an understanding that ideal magnetohydrodynamic (MHD) models for steady electromagnetic accelerations do not need to solve for the magnetic induction equation in Maxwell's equations, which results in a significant simplification in the equations that needs to be solved for the 1-D case. As for the unsteady case, the analytical, slug, and snowplow models are developed and the results compared against the experimental data. The results show that the slug model relates the best amongst the three models to the experimental data within 20% of the impulse bit at pressure levels greater than 5 mbar. This suggests that the auto-initiation PPT operates using a slug mode of operation. This also shows that the slug model can be a very useful tool for the conceptual design phase of a solid ablation PPT. This work can be further improved by coupling the resistive MHD equations with the external circuit equations to include resistive effects in the plasma sheet.
URI: http://hdl.handle.net/10356/18042
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
mb554.pdf
  Restricted Access
538.29 kBAdobe PDFView/Open

Page view(s)

384
checked on Sep 26, 2020

Download(s)

15
checked on Sep 26, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.