Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/180794
Title: | Benchmarking reverse docking through AlphaFold2 human proteome | Authors: | Luo, Qing Wang, Sheng Li, Hoi Yeung Zheng, Liangzhen Mu, Yuguang Guo, Jingjing |
Keywords: | Medicine, Health and Life Sciences | Issue Date: | 2024 | Source: | Luo, Q., Wang, S., Li, H. Y., Zheng, L., Mu, Y. & Guo, J. (2024). Benchmarking reverse docking through AlphaFold2 human proteome. Protein Science, 33(10), e5167-. https://dx.doi.org/10.1002/pro.5167 | Project: | RG97/22 | Journal: | Protein Science | Abstract: | Predicting the binding of ligands to the human proteome via reverse-docking methods enables the understanding of ligand's interactions with potential protein targets in the human body, thereby facilitating drug repositioning and the evaluation of potential off-target effects or toxic side effects of drugs. In this study, we constructed 11 reverse docking pipelines by integrating site prediction tools (PointSite and SiteMap), docking programs (Glide and AutoDock Vina), and scoring functions (Glide, Autodock Vina, RTMScore, DeepRMSD, and OnionNet-SFCT), and then thoroughly benchmarked their predictive capabilities. The results show that the Glide_SFCT (PS) pipeline exhibited the best target prediction performance based on the atomic structure models in AlphaFold2 human proteome. It achieved a success rate of 27.8% when considering the top 100 ranked prediction. This pipeline effectively narrows the range of potential targets within the human proteome, laying a foundation for drug target prediction, off-target assessment, and toxicity prediction, ultimately boosting drug development. By facilitating these critical aspects of drug discovery and development, our work has the potential to ultimately accelerate the identification of new therapeutic agents and improve drug safety. | URI: | https://hdl.handle.net/10356/180794 | ISSN: | 0961-8368 | DOI: | 10.1002/pro.5167 | Schools: | School of Biological Sciences | Rights: | © 2024 The Protein Society. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SBS Journal Articles |
SCOPUSTM
Citations
50
2
Updated on Mar 17, 2025
Page view(s)
63
Updated on Mar 21, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.