Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/180933
Title: Vapor/vapor-solid interfacial growth of covalent organic framework membranes on alumina hollow fiber for advanced molecular separation
Authors: Siow, Samuel Wei Jian
Chong, Jeng Yi
Ong, Jia Hui
Kraft, Markus
Wang, Rong
Xu, Rong
Keywords: Chemistry
Issue Date: 2024
Source: Siow, S. W. J., Chong, J. Y., Ong, J. H., Kraft, M., Wang, R. & Xu, R. (2024). Vapor/vapor-solid interfacial growth of covalent organic framework membranes on alumina hollow fiber for advanced molecular separation. Angewandte Chemie International Edition, 63(32), e202406830-. https://dx.doi.org/10.1002/anie.202406830
Project: RG116/16 
NTU SUG (MAR) 
CREATE 
Journal: Angewandte Chemie International edition 
Abstract: Covalent organic frameworks (COFs), known for their chemical stability and porous crystalline structure, hold promises as advanced separation membranes. However, fabricating high-quality COF membranes, particularly on industrial-preferred hollow fiber substrates, remains challenging. This study introduces a novel vapor/vapor-solid (V/V-S) method for growing ultrathin crystalline TpPa-1 COF membranes on the inner lumen surface of alumina hollow fibers (TpPa-1/Alumina). Through vapor-phase monomer introduction onto polydopamine-modified alumina at 170 °C and 1 atm, efficient polymerization and crystallization occur at the confined V-S interface. This enables one-step growth within 8 h, producing 100 nm thick COF membranes with strong substrate adhesion. TpPa-1/Alumina exhibits exceptional stability and performance over 80 h in continuous cross-flow organic solvent nanofiltration (OSN), with methanol permeance of about 200 L m-2 h-1 bar-1 and dye rejection with molecular weight cutoff (MWCO) of approximately 700 Da. Moreover, the versatile V/V-S method synthesizes two additional COF membranes (TpPa2Cl/Alumina and TpHz/Alumina) with different pore sizes and chemical environments. Adjusting the COF membrane thickness between 100-500 nm is achievable easily by varying the growth cycle numbers. Notably, TpPa2Cl/Alumina demonstrates excellent OSN performance in separating the model active pharmaceutical ingredient glycyrrhizic acid (GA) from dimethyl sulfoxide (DMSO), highlighting the method's potential for large-scale industrial applications.
URI: https://hdl.handle.net/10356/180933
ISSN: 1433-7851
DOI: 10.1002/anie.202406830
Schools: School of Chemistry, Chemical Engineering and Biotechnology 
School of Civil and Environmental Engineering 
Organisations: Cambridge Centre for Carbon Reduction in Chemical Technologies 
Research Centres: Singapore Membrane Technology Centre 
Nanyang Environment and Water Research Institute 
Environmental Chemistry and Materials Centre
Rights: © 2024 Wiley-VCH GmbH. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CCEB Journal Articles

SCOPUSTM   
Citations 50

5
Updated on Mar 19, 2025

Page view(s)

74
Updated on Mar 21, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.