Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/181004
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lim, Peng Ken | en_US |
dc.contributor.author | Wang, Ruoxi | en_US |
dc.contributor.author | Mutwil, Marek | en_US |
dc.date.accessioned | 2024-11-11T02:32:46Z | - |
dc.date.available | 2024-11-11T02:32:46Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Lim, P. K., Wang, R. & Mutwil, M. (2024). LSTrAP-denovo: automated generation of transcriptome atlases for eukaryotic species without genomes. Physiologia Plantarum, 176(4), e14407-. https://dx.doi.org/10.1111/ppl.14407 | en_US |
dc.identifier.issn | 0031-9317 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/181004 | - |
dc.description.abstract | Despite the abundance of species with transcriptomic data, a significant number of species still lack sequenced genomes, making it difficult to study gene function and expression in these organisms. While de novo transcriptome assembly can be used to assemble protein-coding transcripts from RNA-sequencing (RNA-seq) data, the datasets used often only feature samples of arbitrarily selected or similar experimental conditions, which might fail to capture condition-specific transcripts. We developed the Large-Scale Transcriptome Assembly Pipeline for de novo assembled transcripts (LSTrAP-denovo) to automatically generate transcriptome atlases of eukaryotic species. Specifically, given an NCBI TaxID, LSTrAP-denovo can (1) filter undesirable RNA-seq accessions based on read data, (2) select RNA-seq accessions via unsupervised machine learning to construct a sample-balanced dataset for download, (3) assemble transcripts via over-assembly, (4) functionally annotate coding sequences (CDS) from assembled transcripts and (5) generate transcriptome atlases in the form of expression matrices for downstream transcriptomic analyses. LSTrAP-denovo is easy to implement, written in Python, and is freely available at https://github.com/pengkenlim/LSTrAP-denovo/. | en_US |
dc.description.sponsorship | Ministry of Education (MOE) | en_US |
dc.language.iso | en | en_US |
dc.relation | MOE-MOET32022-0002 | en_US |
dc.relation.ispartof | Physiologia Plantarum | en_US |
dc.rights | © 2024 Scandinavian Plant Physiology Society. All rights reserved. | en_US |
dc.subject | Medicine, Health and Life Sciences | en_US |
dc.title | LSTrAP-denovo: automated generation of transcriptome atlases for eukaryotic species without genomes | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Biological Sciences | en_US |
dc.identifier.doi | 10.1111/ppl.14407 | - |
dc.identifier.pmid | 38973613 | - |
dc.identifier.scopus | 2-s2.0-85197732921 | - |
dc.identifier.issue | 4 | en_US |
dc.identifier.volume | 176 | en_US |
dc.identifier.spage | e14407 | en_US |
dc.subject.keywords | Eukaryote | en_US |
dc.subject.keywords | Gene expression profiling | en_US |
dc.description.acknowledgement | Ministry of Education - Singapore,Grant/Award Number: MOE-MOET32022-0002. | en_US |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
Appears in Collections: | SBS Journal Articles |
SCOPUSTM
Citations
50
1
Updated on Mar 17, 2025
Page view(s)
51
Updated on Mar 23, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.