Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/181038
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Mahmoud Gamalen_US
dc.contributor.authorTay, Ying Fanen_US
dc.contributor.authorZhang, Mengyuanen_US
dc.contributor.authorChiam, Sing Yangen_US
dc.contributor.authorWong, Lydia Helenaen_US
dc.date.accessioned2024-11-12T02:29:40Z-
dc.date.available2024-11-12T02:29:40Z-
dc.date.issued2024-
dc.identifier.citationAhmed, M. G., Tay, Y. F., Zhang, M., Chiam, S. Y. & Wong, L. H. (2024). Tailoring surface electronic structure of spinel Co3O4 oxide via Fe and Cu substitution for enhanced oxygen evolution reaction. ACS Materials Letters, 6(10), 4756-4764. https://dx.doi.org/10.1021/acsmaterialslett.4c00857en_US
dc.identifier.issn2639-4979en_US
dc.identifier.urihttps://hdl.handle.net/10356/181038-
dc.description.abstractMultimetal spinel oxides are promising candidates for the oxygen evolution reaction (OER) due to their ability to offer more accessible active sites and oxygen vacancies (Ovac). However, the utilization of redox-active species in spinel oxides is limited. Herein, we unveil an efficient multimetal spinel oxide using high-throughput methods. The oxide contains Fe and Cu substituted into Co sites following a stoichiometry of Fe0.6Cu0.6Co1.8O4. The dual cation substitution of Fe and Cu manipulates the electronic states and generates Ovac, thereby generating more accessible active species. This significantly improves the OH- adsorption capacity on spinel oxide triggering a more favorable OER reaction with a low overpotential of 265 mV at 10 mA cm-2 and high durability in an alkaline medium. Our work not only presents the utilization of a high-throughput approach to explore efficient catalysts with optimal composition but also provides useful insights into the modulation of electronic states for enhanced catalytic performance.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relationRG68/21en_US
dc.relationMOE T2EP50120-0008en_US
dc.relation.ispartofACS Materials Lettersen_US
dc.rights© 2024 American Chemical Society. All rights reserved.en_US
dc.subjectEngineeringen_US
dc.titleTailoring surface electronic structure of spinel Co3O4 oxide via Fe and Cu substitution for enhanced oxygen evolution reactionen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.contributor.researchEnergy Research Institute @ NTU (ERI@N)en_US
dc.identifier.doi10.1021/acsmaterialslett.4c00857-
dc.identifier.scopus2-s2.0-85204582808-
dc.identifier.issue10en_US
dc.identifier.volume6en_US
dc.identifier.spage4756en_US
dc.identifier.epage4764en_US
dc.subject.keywordsSpinel oxideen_US
dc.subject.keywordsOxygen evolutionen_US
dc.description.acknowledgementThe authors would like to express their gratitude to the Singapore Ministry of Education (MOE) for their financial support through their Tier 1 grant (Award ID RG68/21) and Tier 2 grant (MOE T2EP50120-0008). Additionally, they would like to acknowledge the Indonesian Endowment Fund for Education (LPDP) on behalf of the Indonesian Ministry of Education, Culture, Research, and Technology, managed under the INSPIRASI Program (Grant No PRJ-61/LPDP/2022 and 612/E1/KS.06.02/2022).en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 50

1
Updated on Feb 9, 2025

Page view(s)

53
Updated on Feb 10, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.