Please use this identifier to cite or link to this item:
Title: Ultrasound driven bubbles in microfluidics.
Authors: Goh, Cui Ying.
Keywords: DRNTU::Science::Physics::Acoustics and sound
Issue Date: 2009
Abstract: Instead of using conventional valves, we look into using bubbles in microfluidics that are remotely-powered with an ultrasonic transducer to move and control fluid. The experimental approach was used in determining the ideal conditions for optimization of transduction. System adopted consisted of a glass slide with a soft polymer imprinted with microchannels plasma bonded to it. In the later section, bubbles in a flow-focusing device, coupled with ultrasound, were observed with an inverted microscope and high-speed camera.
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
3.94 MBAdobe PDFView/Open

Page view(s)

Updated on Dec 5, 2020


Updated on Dec 5, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.