Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/181449
Title: | Few-shot learning in Wi-Fi-based indoor positioning | Authors: | Xie, Feng Lam, Soi Hoi Xie, Ming Wang, Cheng |
Keywords: | Engineering | Issue Date: | 2024 | Source: | Xie, F., Lam, S. H., Xie, M. & Wang, C. (2024). Few-shot learning in Wi-Fi-based indoor positioning. Biomimetics, 9(9), 9090551-. https://dx.doi.org/10.3390/biomimetics9090551 | Journal: | Biomimetics | Abstract: | This paper explores the use of few-shot learning in Wi-Fi-based indoor positioning, utilizing convolutional neural networks (CNNs) combined with meta-learning techniques to enhance the accuracy and efficiency of positioning systems. The focus is on addressing the challenge of limited labeled data, a prevalent issue in extensive indoor environments. The study explores various scenarios, comparing the performance of the base CNN and meta-learning models. The meta-learning approach involves few-shot learning tasks, such as three-way N-shot, five-way N-shot, etc., to enhance the model's ability to generalize from limited data. The experiments were conducted across various scenarios, evaluating the performance of the models with different numbers of samples per class (K) after filtering by cosine similarity (FCS) during both the stages of data preprocessing and meta-learning. The scenarios included both base classes and novel classes, with and without meta-learning. The results indicated that the base CNN model achieved varying accuracy levels depending on the scenario and the number of samples per class retained after FCS. Meta-learning performed acceptably in scenarios with fewer samples, which are the distinct datasets pertaining to novel classes. With 20 samples per class, the base CNN achieved an accuracy of 0.80 during the pre-training stage, while meta-learning (three-way one-shot) achieved an accuracy of 0.78 on a new small dataset with novel classes. | URI: | https://hdl.handle.net/10356/181449 | ISSN: | 2313-7673 | DOI: | 10.3390/biomimetics9090551 | Schools: | School of Mechanical and Aerospace Engineering | Rights: | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | MAE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
biomimetics-09-00551.pdf | 2.22 MB | Adobe PDF | ![]() View/Open |
Page view(s)
73
Updated on May 7, 2025
Download(s)
15
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.